C++ 有边数限制的最短路 Bellman_ford算法(带负权边)

描述了在有向图中,通过Bellman-Ford算法解决最多k条边的最短路径问题,包括处理负权边和负权回路的情况。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

给定一个 n
个点 m
条边的有向图,图中可能存在重边和自环, 边权可能为负数。

请你求出从 1
号点到 n
号点的最多经过 k
条边的最短距离,如果无法从 1
号点走到 n
号点,输出 impossible。

注意:图中可能 存在负权回路 。

输入格式
第一行包含三个整数 n,m,k

接下来 m
行,每行包含三个整数 x,y,z
,表示存在一条从点 x
到点 y
的有向边,边长为 z

点的编号为 1∼n

输出格式
输出一个整数,表示从 1
号点到 n
号点的最多经过 k
条边的最短距离。

如果不存在满足条件的路径,则输出 impossible。

数据范围
1≤n,k≤500
,
1≤m≤10000
,
1≤x,y≤n

任意边长的绝对值不超过 10000

输入样例:
3 3 1
1 2 1
2 3 1
1 3 3
输出样例:
3

在这里插入图片描述

#include <cstring>
#include <iostream>
#include <algorithm>

using namespace std;

const int N = 510, M = 10010;
int n, m, k;
int dist[N], backup[N];

struct Edge
{
    int a, b, w;
}edges[M];

int bellman_ford()
{
    memset(dist, 0x3f, sizeof(dist));
    dist[1] = 0;
    
    for(int i = 0; i < k; i ++ )
    {
        memcpy(backup, dist, sizeof(backup)); // 拷贝一个备份,用上次的最短距离更新
        for(int j = 0; j < m; j ++ )
        {
            int a = edges[j].a, b = edges[j].b, w = edges[j].w;
            dist[b] = min(dist[b], backup[a] + w);
        }
    }
    
    if(dist[n] > 0x3f3f3f3f / 2) return -1;
    
    return dist[n];
}

int main ()
{
    scanf("%d%d%d", &n, &m, &k);
    
    for(int i = 0; i < m; i ++ )
    {
        int a, b, w;
        scanf("%d%d%d", &a, &b, &w);
        edges[i] = {a, b, w};
    }
    
    int t = bellman_ford();
    
    if(t == -1) puts("impossible");
    else printf("%d\n", t);
    
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值