给你一个有 n 个节点的 有向无环图(DAG),请你找出所有从节点 0 到节点 n-1 的路径并输出(不要求按特定顺序)
graph[i] 是一个从节点 i 可以访问的所有节点的列表(即从节点 i 到节点 graph[i][j]存在一条有向边)。
示例 1:
输入:graph = [[1,2],[3],[3],[]]
输出:[[0,1,3],[0,2,3]]
解释:有两条路径 0 -> 1 -> 3 和 0 -> 2 -> 3
示例 2:
输入:graph = [[4,3,1],[3,2,4],[3],[4],[]]
输出:[[0,4],[0,3,4],[0,1,3,4],[0,1,2,3,4],[0,1,4]]
提示:
n == graph.length
2 <= n <= 15
0 <= graph[i][j] < n
graph[i][j] != i(即不存在自环)
graph[i] 中的所有元素 互不相同
保证输入为 有向无环图(DAG)
思路:最简单的图的深搜遍历。
class Solution {
public:
vector<vector<int>> g;
vector<int> path;
vector<vector<int>> res;
int n;
void dfs(int u) {
path.push_back(u);
if(u == n - 1) {
res.push_back(path);
path.pop_back(); // 回溯前移除当前节点,恢复路径
return; // 直接返回,不再进行后续递归
}
for(auto v : g[u]) dfs(v);
path.pop_back();
}
vector<vector<int>> allPathsSourceTarget(vector<vector<int>>& graph) {
n = graph.size();
g = graph;
dfs(0);
return res;
}
};