Leetcode 797. 所有可能的路径

给你一个有 n 个节点的 有向无环图(DAG),请你找出所有从节点 0 到节点 n-1 的路径并输出(不要求按特定顺序)

graph[i] 是一个从节点 i 可以访问的所有节点的列表(即从节点 i 到节点 graph[i][j]存在一条有向边)。

示例 1:
在这里插入图片描述

输入:graph = [[1,2],[3],[3],[]]
输出:[[0,1,3],[0,2,3]]
解释:有两条路径 0 -> 1 -> 3 和 0 -> 2 -> 3
示例 2:
在这里插入图片描述

输入:graph = [[4,3,1],[3,2,4],[3],[4],[]]
输出:[[0,4],[0,3,4],[0,1,3,4],[0,1,2,3,4],[0,1,4]]

提示:

n == graph.length
2 <= n <= 15
0 <= graph[i][j] < n
graph[i][j] != i(即不存在自环)
graph[i] 中的所有元素 互不相同
保证输入为 有向无环图(DAG)
思路:最简单的图的深搜遍历。

class Solution {
public:
    vector<vector<int>> g;
    vector<int> path;
    vector<vector<int>> res;
    int n;

    void dfs(int u) {
        path.push_back(u);
        if(u == n - 1) {
            res.push_back(path);
            path.pop_back(); // 回溯前移除当前节点,恢复路径
            return; // 直接返回,不再进行后续递归
        }
        for(auto v : g[u]) dfs(v);
        path.pop_back();
    }

    vector<vector<int>> allPathsSourceTarget(vector<vector<int>>& graph) {
        n = graph.size();
        g = graph;
        dfs(0);
        return res;
    }
};
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值