给你一个由 ‘1’(陆地)和 ‘0’(水)组成的的二维网格,请你计算网格中岛屿的数量。
岛屿总是被水包围,并且每座岛屿只能由水平方向和/或竖直方向上相邻的陆地连接形成。
此外,你可以假设该网格的四条边均被水包围。
示例 1:
输入:grid = [
[“1”,“1”,“1”,“1”,“0”],
[“1”,“1”,“0”,“1”,“0”],
[“1”,“1”,“0”,“0”,“0”],
[“0”,“0”,“0”,“0”,“0”]
]
输出:1
示例 2:
输入:grid = [
[“1”,“1”,“0”,“0”,“0”],
[“1”,“1”,“0”,“0”,“0”],
[“0”,“0”,“1”,“0”,“0”],
[“0”,“0”,“0”,“1”,“1”]
]
输出:3
提示:
m == grid.length
n == grid[i].length
1 <= m, n <= 300
grid[i][j] 的值为 ‘0’ 或 ‘1’
思路:一类题,属于flood fill的题目,就是找一个图中联通块的数量,可以用bfs也可以dfs,bfs要写队列比较麻烦。对于每一个联通块,深搜,在递归前标记已经搜过的为’0’。
class Solution {
public:
vector<vector<char>> g;
int dx[4] = {-1, 0, 1, 0}, dy[4] = {0, 1, 0, -1};
int numIslands(vector<vector<char>>& grid) {
g = grid;
int res = 0;
for(int i = 0; i < grid.size(); i ++ )
for(int j = 0; j < grid[i].size(); j ++ ) {
if(g[i][j] == '1') {
dfs(i, j);
res ++;
}
}
return res;
}
void dfs(int x, int y) {
g[x][y] = '0';
for(int i = 0; i < 4; i ++ ) {
int a = x + dx[i], b = y + dy[i];
if(a >= 0 && a < g.size() && b >= 0 && b < g[a].size() && g[a][b] == '1')
dfs(a, b);
}
}
};