Leetcode 684. 冗余连接

树可以看成是一个连通且 无环 的 无向 图。

给定往一棵 n 个节点 (节点值 1~n) 的树中添加一条边后的图。添加的边的两个顶点包含在 1 到 n 中间,且这条附加的边不属于树中已存在的边。图的信息记录于长度为 n 的二维数组 edges ,edges[i] = [ai, bi] 表示图中在 ai 和 bi 之间存在一条边。

请找出一条可以删去的边,删除后可使得剩余部分是一个有着 n 个节点的树。如果有多个答案,则返回数组 edges 中最后出现的那个。

示例 1:

在这里插入图片描述

输入: edges = [[1,2], [1,3], [2,3]]
输出: [2,3]
示例 2:
在这里插入图片描述

输入: edges = [[1,2], [2,3], [3,4], [1,4], [1,5]]
输出: [1,4]

提示:

n == edges.length
3 <= n <= 1000
edges[i].length == 2
1 <= ai < bi <= edges.length
ai != bi
edges 中无重复元素
给定的图是连通的
思路:就是找出环中删除哪条边,找环可以用并查集。我们从前往后枚举,添加边的时候,如果两个点已经在一个集合里了,说明添加上这条边就是环了,并且这个是最后一条边。

class Solution {
public:
    vector<int> p;

    int find(int x) {
        if(p[x] != x) p[x] = find(p[x]);
        return p[x];
    }

    vector<int> findRedundantConnection(vector<vector<int>>& edges) {
        int n = edges.size();
        p.resize(n + 1);
        for(int i = 1; i <= n; i ++ ) p[i] = i;

        for(auto& e : edges) {
            int a = find(e[0]), b = find(e[1]);
            if(a != b) p[a] = b;
            else return e;
        }
        return {};
    }
};
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值