最简单Resnet 残差网络是怎么回事,几句话搞明白

很久没写过AI相关的东西了,今天继续,今天写下残差网络。

1. 残差网络的背景

神经网络的深度长期以来被认为是提升模型性能的关键因素之一。理论上,网络越深,能够学习到的特征就越复杂、越抽象,模型的表达能力也就越强。然而,在实际应用中,当网络深度达到一定程度后,模型的性能不仅没有提升,反而出现了明显的下降。

ResNet的创新之处在于引入了残差学习的概念。核心思想是:与其让堆叠的非线性层直接拟合目标映射H(x),不如让它们拟合残差函数F(x) = H(x)-x,而原始映射则变为H(x) = F(x)+x。这一看似简单的改变,却解决了深度神经网络训练中的根本性问题。

简单说就是现在拟合是原数据和神经元结果之间的区别

2. 残差网络的结构与实现

2.1. 最简单的残差块结构

残差网络的基本构建单元是残差块(Residual Block)。一个标准的残差块包含两条路径:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

香菜+

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值