[Hibernate] 初步认识

本文介绍了Hibernate ORM框架的基本概念,包括其作为对象关系映射工具如何在Java对象与关系数据库间建立映射,实现数据的持久化存储。文章还详细解释了SessionFactory、Session等核心API的功能与作用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Hibernate

介绍

ORM框架(Object/Relational Mapping)
对象关系映射,因此Hibernate会在Java对象和关系数据库之间建立某种映射,以达到存取Java对象的目的,实实现持久化存储(将内存中的数据存储在关系型的数据库、磁盘文件、XML数据文件中等等)的一种解决方案

基本APIs

  • SessionFactory(org.hibernate.SessionFactory)
    对于单个数据库映射关系经过编译后的内存缓存,它是线程安全且不可变的。是 Session 生成的工厂实例,也是 ConnectionProvider 的一个客户端(会用到 ConnectionProvider)。它在进程或集群的级别上,为那些在事务之前可重复使用的数据提供了选择性的二级缓存。

  • Session(org.hibernate.Session)
    提供应用程序和持久化存储介质之间的一个单线程的会话对象,此对象生存期很短。它隐藏了 JDBC 连接,也是 Transaction 的工厂实例。对于应用的持久化对象及其集合,它提供了一个一级缓存;当遍历导航对象图或者根据持久化标识查找对象时,会用到这个一级缓存。

  • 持久化的对象及其集合
    具有持久化状态和业务功能的单线程对象,同样生存期很短。这些对象可能是普通的 JavaBeans/POJOs(Plain Ordinary Java Object),它们只能与一个 Session 相关联。一旦 Session 被关闭,它们就会脱离持久化状态,并且可以被应用程序的任何层使用(比如跟表示层打交道的 data transfer objects)

  • 瞬态(transient)、托管 状态(detached)的对象及其集合
    持久化的类目前没有和 Session 相关联的实例。他们可能是因为在被应用实例化后还没有被持久化,也可能是由于实例化它们的 Session 对象已经被关闭,从而脱离了持久化状态。

  • 事物(org.hibernate.Transaction)
    (可选的)它是应用程序用来指定原子操作单元范围的对象,是一个单线程的、短生存周期的对象。它通过抽象把应用从底层的 JDBC、JTA 以及 CORBA 事务中隔离开。在某些情况下,一个 Session 可能涵盖多个 Transactions 对象。尽管使用该对象是可选的,但事务的划分(无论是使用底层的 API 还是使用 Transaction 对象)都是不可选的。

  • ConnectionProvider(org.hibernate.connection.ConnectionProvider)
    (可选的)它是应用程序用来指定原子操作单元范围的对象,是一个单线程的、短生存周期的对象。它通过抽象把应用从底层的 JDBC、JTA 以及 CORBA 事务中隔离开。在某些情况下,一个 Session 可能涵盖多个 Transactions 对象。尽管使用该对象是可选的,但事务的划分(无论是使用底层的 API 还是使用 Transaction 对象)都是不可选的。

  • TransactionFactory(org.hibernate.TransactionFactory)
    (可选的)它是应用程序用来指定原子操作单元范围的对象,是一个单线程的、短生存周期的对象。它通过抽象把应用从底层的 JDBC、JTA 以及 CORBA 事务中隔离开。在某些情况下,一个 Session 可能涵盖多个 Transactions 对象。尽管使用该对象是可选的,但事务的划分(无论是使用底层的 API 还是使用 Transaction 对象)都是不可选的。

  • 扩展接口(Extension Interfaces)
    Hibernate 提供了很多可选的扩展接口,你可以通过实现它们来定制你的持久层的行为。

内容概要:本文档详细介绍了一个基于MATLAB实现的跨尺度注意力机制(CSA)结合Transformer编码器的多变量时间序列预测项目。项目旨在精准捕捉多尺度时间序列特征,提升多变量时间序列的预测性能,降低模型计算复杂度与训练时间,增强模型的解释性和可视化能力。通过跨尺度注意力机制,模型可以同时捕获局部细节和全局趋势,显著提升预测精度和泛化能力。文档还探讨了项目面临的挑战,如多尺度特征融合、多变量复杂依赖关系、计算资源瓶颈等问题,并提出了相应的解决方案。此外,项目模型架构包括跨尺度注意力机制模块、Transformer编码器层和输出预测层,文档最后提供了部分MATLAB代码示例。 适合人群:具备一定编程基础,尤其是熟悉MATLAB和深度学习的科研人员、工程师和研究生。 使用场景及目标:①需要处理多变量、多尺度时间序列数据的研究和应用场景,如金融市场分析、气象预测、工业设备监控、交通流量预测等;②希望深入了解跨尺度注意力机制和Transformer编码器在时间序列预测中的应用;③希望通过MATLAB实现高效的多变量时间序列预测模型,提升预测精度和模型解释性。 其他说明:此项目不仅提供了一种新的技术路径来处理复杂的时间序列数据,还推动了多领域多变量时间序列应用的创新。文档中的代码示例和详细的模型描述有助于读者快速理解和复现该项目,促进学术和技术交流。建议读者在实践中结合自己的数据集进行调试和优化,以达到最佳的预测效果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

geodoer

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值