Lisflood

本文详细描述了如何使用LisFlood模型进行居住区低影响开发的模拟,涉及输入文件(如bdyswmm节点数据、bci节点信息和DEM数据)的准备,通过ArcGIS转换DEM数据,以及在特定目录下执行lisflood-vtest.par命令。最终解析软件输出的CSV结果。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

3.耦合LisFlood模型

技术路线:

3.1输入文件

文献:基于SWMM和Lisflood-FP模型的居住区低影响开发模拟评价

3.1.2 .bdy swmm节点溢流量(junBou1.bdy)

3.1.3 bci节点信息声明 (time.bci)

P 坐标x-坐标y(可从inp获取) QVAR 节点名称

3.1.4 DEM(dem10.asc)

DEM数据。ArcGIS中栅格转ASCII获取到

3.2运行

\LisFlood\LISFLOOD-FP-trunk\out\build\msvc-x64-Debug目录下,cmd命令行

“lisflood -v test.par”(运行注意软件版本,建议推荐Lisflood5【在作者资源中可以找到】)

3.3结果解析得到CSV

### Lisflood 模型、软件及相关工具概述 Lisflood 是一种广泛应用于水文学和水资源管理领域的分布式流域模拟模型。它主要用于洪水预测、径流分析以及气候变化对水循环影响的研究。以下是关于 Lisflood 的详细介绍: #### 1. **Lisflood 模型简介** Lisflood 是一个基于物理过程的半分布式的水文模型,能够模拟降雨-径流关系及其空间变化特性[^5]。该模型的核心功能包括但不限于以下几个方面: - 地表径流计算:采用 Green-Ampt 或其他方法来估算土壤水分动态。 - 下渗过程建模:考虑不同土地覆盖类型的下渗能力差异。 - 蒸散发估计:结合气象数据(如温度、湿度)评估蒸散量。 #### 2. **主要输入参数** 为了运行 Lisflood 模型,通常需要准备以下几类基础数据集: - DEM 数据(Digital Elevation Model) - 土壤属性数据库 - 土地利用分类地图 - 气象观测记录(降水、气温等) 这些数据经过预处理后作为模型输入参与运算流程[^6]。 #### 3. **技术实现细节** 在实际应用过程中,开发者可能会借助 Python 编程语言完成部分辅助工作,比如批量读取 NetCDF 文件格式的数据源或是绘制结果图表。此时可以引入诸如 `numpy`, `pandas` 和 `matplotlib` 等第三方库来进行高效的数据管理和可视化展示[^7]。 ```python import numpy as np from netCDF4 import Dataset def read_netcdf(file_path): dataset = Dataset(file_path) variables = list(dataset.variables.keys()) print(f"Variables found: {variables}") read_netcdf('example_data.nc') ``` 以上代码片段展示了如何利用 `netCDF4` 库加载并探索 NC 文件的内容结构。 #### 4. **优势特点** 相比传统集中式水文模型而言,Lisflood 更加注重捕捉地理空间上的异质性特征,因此具备更高的分辨率表现力。此外,其开源性质也促进了学术界之间的交流合作[^8]。 --- ###
评论 10
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

GISer_Jinger

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值