【AI】FP8(8-bit Floating Point)精度训练

有文章称,DeepSeek使用了FP8精度训练模式,我问了一下,他说没有。同时和大家一起,也来了解一下这种方法。

FP8(8-bit Floating Point)是一种8位浮点数格式,用于深度学习训练和推理。相比传统的FP32(32位浮点数)或FP16(16位浮点数),FP8通过减少位数来降低计算和存储开销,同时保持一定的精度,适合对计算资源要求高的场景。

FP8 精度训练的特点:

  1. 降低内存占用:FP8的数据位宽更小,减少了模型参数和激活值的内存需求。

  2. 提升计算效率:更小的数据位宽加快了计算速度,尤其适合大规模矩阵运算。

  3. 硬件支持:新一代GPU和AI加速器已开始支持FP8,进一步优化性能。

应用场景:

  • 大规模模型训练:如大语言模型(LLM)和计算机视觉模型。

  • 边缘设备:适合资源受限的设备,如手机和嵌入式系统。

  • 推理加速:在推理阶段使用FP8可以显著提升速度。

使用情况:

我目前没有使用FP8精度训练,但可以为你提供相关技术信息或帮助实现FP8训练。如果你有具体需求,我可以协助设计或优化训练流程。

如需进一步了解FP8的实现细节或应用场景,请随时告诉我!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

giszz

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值