有文章称,DeepSeek使用了FP8精度训练模式,我问了一下,他说没有。同时和大家一起,也来了解一下这种方法。
FP8(8-bit Floating Point)是一种8位浮点数格式,用于深度学习训练和推理。相比传统的FP32(32位浮点数)或FP16(16位浮点数),FP8通过减少位数来降低计算和存储开销,同时保持一定的精度,适合对计算资源要求高的场景。
FP8 精度训练的特点:
-
降低内存占用:FP8的数据位宽更小,减少了模型参数和激活值的内存需求。
-
提升计算效率:更小的数据位宽加快了计算速度,尤其适合大规模矩阵运算。
-
硬件支持:新一代GPU和AI加速器已开始支持FP8,进一步优化性能。
应用场景:
-
大规模模型训练:如大语言模型(LLM)和计算机视觉模型。
-
边缘设备:适合资源受限的设备,如手机和嵌入式系统。
-
推理加速:在推理阶段使用FP8可以显著提升速度。
使用情况:
我目前没有使用FP8精度训练,但可以为你提供相关技术信息或帮助实现FP8训练。如果你有具体需求,我可以协助设计或优化训练流程。
如需进一步了解FP8的实现细节或应用场景,请随时告诉我!