Tutorial:

Functional Distributional Semantics

Guy Emerson



What I'll Cover...

= Theoretical background
= Running the code (Pixie Autoencoder)

= Future/ongoing work



Background

= Distributional semantics

= The context of a word gives us information
about its meaning

m See: “What are the goals of distributional semantics?”
(ACL 2020)

= Truth-conditional semantics
= Words are not entities
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= Fundamental distinction between:
= Words
= Entities they refer to

= |Important for discourse: anaphora resolution,
question answering, dialogue processing...

= Meaning as a function over entities
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Summary of What's New
S

= Pixie: entity representation

= Word meanings as functions:
pixie — probability of truth



DMRS

Every picture tells a story
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DMRS

ARG1 ARG2

v picture tell 3 story

\_S \_

RSTR RSTR

Vx3y3z picture(x) = [story(z) A tell(y)
A ARGL(Y, X) A ARG2(Y, Z)]

= See: “Linguists Who Use Probabilistic Models Love Them:

Quantification in Functional Distributional Semantics” (PaM2020)
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ARG1 ARG2
y

dog(x) chase(y) cat(z)
animal(x) pursue(y) animal(z)
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dog(X) chase(Y) cat(2)
animal(X) pursue(Y) animal(2)
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World Model

= Cardinality Restricted Boltzmann Machine
(CaRBM; Swersky et al., 2012)



World Model

= Cardinality Restricted Boltzmann Machine
(CaRBM; Swersky et al., 2012)

= (Work in progress: real-valued version)
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World Model

= Cardinality Restricted Boltzmann Machine
(CaRBM; Swersky et al., 2012)

= P(s) o exp (—E(s))



World Model

= Cardinality Restricted Boltzmann Machine
(CaRBM; Swersky et al., 2012)

L
= P(s) xexp Z ij )x,.yj
L

X—yins



Lexical Model

= Feedforward networks

= t(x) = o(
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Lexical Model

= Feedforward networks

= tOx) =0 (v{"x))
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Y = P(r|x) o ti(x)
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Gradient Descent
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9 logP (g) = ([Eslg — [Es) [% (_E(S))]

06
0

= Latent variables necessary but inconvenient

= Approximate distribution: variational inference

(Jordan et al., 1999; Attias, 2000)
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Variational Inference
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Amortised Variational Inference
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= Variational distribution must be optimised
for each input graph
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Amortised Variational Inference

= Variational distribution must be optimised
for each input graph

= Amortisation: train a network to predict the
variational distribution (Kingma and Welling, 2014;
Rezende et al., 2014; Mnih and Gregor, 2014)

= Input graphs of different topologies: share network
weights with graph convolutions
(Duvenaud et al., 2015; Marcheggiani and Titov, 2017)
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Variational Inference
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Amortised Variational Inference
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Amortised Variational Inference
S S
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Gradient Descent
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9 logP (g) = ([Es|g — [Es) [69 ( E(S))]
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» Latent variables: amortised variational inference
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Gradient Descent
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9 logP (g) = ([Eslg — [Es) [69 ( E(S))]
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= Latent variables: amortised variational inference

= Additional details... regularisation, dropout, B-VAE weighting,
negative sampling, probit approximation, learning rate,
warm start, soft constraints, belief propagation for k... 18



Gradient Descent
S S

9 logP (g) = ([Eslg — [Es) [69 ( E(S))]

06
d
+ [Eslg |:£ log P (g | 5)]

= Latent variables: amortised variational inference

= See: “Autoencoding Pixies: Amortised Variational
Inference with Graph Convolutions for Functional
Distributional Semantics” (ACL 2020) 18
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» Generative model & inference network
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Pixie Autoencoder
1
= Generative model & inference network

= Unique selling point:
= Truth-conditional distributional semantics

= https://gitlab.com/guyemerson/pixie/
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Training Needs Graphs

= Training needs dependency graphs, not raw text
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Training Needs Graphs

= Training needs dependency graphs, not raw text

= WikiWoods
= English Wikipedia, parsed into DMRS graphs
= 31 million graphs (after preprocessing)
= (So far, only verbs with ARG1 & ARG2 nouns)
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Ongoing/Future Work

= Joint learning with grounded data

Joint learning with lexical resources

More efficient model (continuous pixies)

Latent variable for “topic”

Covariance of truth values (for pragmatics)

Deeper networks (for polysemy)

Semi-compositional idioms
21
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Ongoing/Future Work

= Joint learning with grounded data

m Joint learning with lexical resources

m More efficient model (continuous pixies)

m Latent variable for “topic”

m Covariance of truth values (for pragmatics)
m Deeper networks (for polysemy)

m Semi-compositional idioms
21



Joint Learning with Grounded Data
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= Fundamental distinction between words and entities

22



Joint Learning with Grounded Data
1

= Fundamental distinction between words and entities

= Vector space models:
= Early fusion, late fusion, cross-modal maps...

22



Joint Learning with Grounded Data
1

= Fundamental distinction between words and entities

= Vector space models:
= Early fusion, late fusion, cross-modal maps...

= Functional Distributional Semantics:
= Text — pixies are latent
= Grounded data — pixies are observed
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Visual Genome Dataset

“couple cutting cake”
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Visual Genome Dataset
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