35 名员工的Etched团队筹集了 1.2 亿美元,研发出专为 Transformer打造的芯片sohu

事实上,当时的 AI 模型种类繁多,有用于自动驾驶汽车的 CNN、用于语言的 RNN,还有用于生成图像和视频的 U-Nets 等等。而Transformer(ChatGPT 中的“T”)是第一个可以扩展的模型。

当时,Transformer 还没风靡全球,许多公司都构建了灵活的 AI 芯片和 GPU 来处理数百种不同的架构,例如英伟达的 GPUs、Amazon 的 Trainium、AMD 的加速器、Graphcore 的 IPUs、D-Matrix 的 Corsair 和英特尔的 Gaudi 等。如此背景下,自然没人想要制造专为特定架构设计的 AI 芯片(ASIC):Transformer 的市场不大,而芯片项目的成本为 5000 万至 1 亿美元,还需要数年时间才能投入生产。但突然之间,ChatGPT 的全球爆火令情况发生了巨大变化:

(1)前所未有的需求:在 ChatGPT 之前,Transformer 推理的市场约为 5000 万美元,现在则已达数十亿美元。所有大型科技公司都在使用 Transformer 模型(OpenAI、谷歌、亚马逊、微软、Meta 等)。

(2)架构逐渐趋同:AI 模型过去变化很大,但自 GPT-2 以来,最先进的模型架构几乎保持一致。OpenAI 的 GPT 系列、谷歌的 PaLM、Meta 的 LLaMa、甚至特斯拉的 FSD 都是基于 Transformer。

专用 ASIC 芯片(专为特定架构而设计的 AI 芯片)是一种必然趋势。

当模型的训练成本超过 10 亿美元,推理成本超过 100 亿美元时,就会自认会有人去研发专用芯片:在这种规模下,只要有 1% 的性能改进,都能证明成本为 5000 万至 1 亿美元的芯片项目是值得的。

在运行文本、图像和视频转换器时,Sohu 的速度比英伟达下一代 Blackwell GB200 GPU 还要快一个数量级,且成本更低;700 亿参数 Llama 3 吞吐量能达到每秒 50 万 tokens;一台 8xSohu 服务器可取代 160

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

globalcoding

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值