GAN 生成对抗神经网络

GAN

GAN的结构

GAN的设计灵感来源于博弈论中的零和博弈(Zero-sum Game),在零和博弈中,参与双方的收益是完全相反的,一方的收益必然导致另一 方的损失,总收益为零。

GAN 主 要 由 两 部 分 组 成 : 生 成 器 ( Generator ) 和 判 别 器 (Discriminator),它们分别扮演了两个不同的角色。 生成器的任务是生成接近真实数据分布的样本,而判别器的任务则是尽可 能地区分真实的样本和生成器生成的样本。 通过生成器和判别器之间的对抗,GAN可以学习到生成高质量样本的能力。

以图片生成为例: 生成器是一个生成图片的网络,它使用服从某一分布(均匀分布或高斯 分布)的噪声生成一个类似真实训练数据的图片,记作𝐺(𝒛),追求效果 是越像真实图片越好。 判别器是一个二分类器,用来判断一个图片是不是“真实的” ,它的输入是采样的真实图片𝒙以及生成器生成的图片𝐺(𝒛),输出是输入图片是真实图片的概率,如果输入图片来自真实数据,那么判别器输出大的概率,否则,输出小的概率。

image-20240425145159732

GAN的目标函数

GAN的目标是使生成器生成的数据能够骗过判别器,因此需要定义一个目标函数,使得判别器判断真实样本为“真” 、生成样本为“假”的概率最小化。
min ⁡ G max ⁡ D V ( D , G ) = E x ∼ p d a t a ( x ) [ l o g D ( x ) ] + E z ∼ p z ( z ) [ log ⁡ ( 1 − D ( G ( z ) ) ) ] \min_G\max_DV(D,G)=E_{\boldsymbol{x}\thicksim p_{data}(\boldsymbol{x})}[logD(\boldsymbol{x})]+E_{\mathbf{z}\thicksim p_{\mathbf{z}}(\mathbf{z})}[\log{(1-D(G(\mathbf{z})))}] GminDmaxV(D,G)=Expda

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Gowi_fly

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值