全部学习汇总: GitHub - GreyZhang/g_SICP: learn SICP and hack lisp.
一个很有用的处理就是对列表元素的批量处理,比如,对元素进行一个因子的乘积。上面的代码设计师一个递归的设计,在理解设计上的确是一个很有效的设计方式。之前,我自己使用python的时候大部分的处理都是很基础的操作,使用这种批量处理模式的时候偏少。后面可以借鉴一下,这的确是可以让代码简化且更加容易理解维护。
如果利用高阶抽象,可以把这个过程抽象出来一个map函数。这样,批量处理的形式更加自由了。其实,最初学习python的时候似乎是见过这样的设计,只是我用得python十分肤浅,可能旧代码的复用也就很容易实现我自己的需求。由此,倒是削弱了我对这方面的探索诉求。
通过高阶抽象实现了map之后,重新设计的scale-list看起来是简洁清晰了很多。
关于这个联系,第一个应该可以算作是即将被我淘汰的一种设计了。设计的模式其实考虑起来也简单,跟比例因子处理一样,一个递归就可以了。第二个实现,即使是没有square,加一个lambda也是很容易操作的。
(define (square-list l)
(map (lambda (x) (* x x)) l))
做一个简单的测试:
运行的效果没有问题。后面的这种设计模式的确是一个更加容易扩展的模式,软件随着复杂度以及规模的增加会越来越显示出优势。在C语言设计中,类似的抽象其实也应该进行考虑。
关于这个问题,理解起来还是很容易的。为什么顺序是反着的呢?这个顺序是不断使用cons在前面追加的一个过程,取数据的时候顺序是从前往后,但是cons的过程则是从里到外,也就是从后向前的一个过程。因此,计算出来的数据肯定是顺序相反的。
这个设计,从处理数据的顺序角度思考的必要性其实就没有了。前面实现append等函数的时候其实做过分析,如果想要重新构建新的list从前面进行增补要比后面增补容易得多。因为,要保证最后一个原始是nil,这是一个必须要遵守的前提。
这是for-each的说明,这个功能实现与map的差异在于不会修改原始的数据而是生成新的数据或者动作。
(define (for-each p-name l-name)
(cond ((= 1 (length l-name))
(p-name (car l-name)))
(else
(p-name (car l-name))
(for-each p-name (cdr l-name)))))
没有看过参考的答案,感觉上实现起来没有什么太大的难点。可能,设计的可能性会有很多,我也只是实现了其中的一种。目前,接触到的lisp技巧中,似乎很少见到顺序执行的结构,能够找到的只有一个cond。
这是运行的结果,运行的效果还是可以的。
关于map以及foreach的差异:map其实是一个数据的修改器,会对后面的数据进行修正调整。而for-each只是一个批处理的方式。这么看,严格意义上说,foreach其实是可以完成map的所有的功能的,某些场景之下map可能会更加简单一些。