辗转相除法-最大公约数和最小公倍数

本文详细介绍了欧几里得算法(辗转相除法)及其在C++代码中的实现,同时对比了其与穷举法求最大公约数的方法。通过实际例子展示了如何用这两种方法找到100和18的最大公约数,并介绍了最小公倍数的计算原理。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

例如:假如需要求 100 和18 两个正整数的最大公约数,用欧几里得算法,是这样进行的:
100 % 18 = 10
18 % 10 = 8
10 % 8 = 2
8 % 2 = 0
至此,最大公约数为2

思想:辗转相除法, 又名欧几里德算法(Euclidean algorithm),是求最大公约数的一种方法。它的具体做法是:用较小数除较大数,再用出现的余数(第一余数)去除除数,再用出现的余数(第二余数)去除第一余数,如此反复,直到最后余数是0为止。如果是求两个数的最大公约数,那么最后的除数就是这两个数的最大公约数。

#include<iostream>

using namespace std;

int main()
{
    int n, m, num1, num2, temp;
    cin>>num1>>num2;
    m = num1;
    n = num2;
    while(num2 != 0)
    {
        temp = num1 % num2;
        num1 = num2;
        num2 = temp;
    }
    cout<<"最大公约数:"<<num1<<endl;
    cout<<"最小公倍数:"<<n * m / num1<<endl;
    return 0;
}

还有一个穷举法,最大公约数肯定是能同时被两个数整除。
最小公倍数就是两数相乘再去除以最大公约数。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值