Beta分布

Beta函数

Beta函数的定义如下B(a,b)=∫01xa−1(1−x)b−1dx,\mathrm{B}(a,b)=\int_0^1 x^{a-1}(1-x)^{b-1}dx,B(a,b)=01xa1(1x)b1dx,其中参数a>0a>0a>0b>0b>0b>0。Beta函数具有如下性质:
(1)B(a,b)=B(b,a)\mathrm{B}(a,b)=\mathrm{B}(b,a)B(a,b)=B(b,a)
证明:令y=1−xy=1-xy=1x,则有B(a,b)=∫10(1−y)a−1yb−1(−dy)=∫01(1−y)a−1yb−1dy=B(b,a)\mathrm{B}(a,b)=\int^0_1 (1-y)^{a-1}y^{b-1}(-dy)=\int^1_0 (1-y)^{a-1}y^{b-1}dy=\mathrm{B}(b,a)B(a,b)=10(1y)a1yb1(dy)=01(1y)a1yb1dy=B(b,a)(2)Beta函数与Gamma函数之间的关系B(a,b)=Γ(a)Γ(b)Γ(a+b)\mathrm{B}(a,b)=\frac{\Gamma(a)\Gamma(b)}{\Gamma(a+b)}B(a,b)=Γ(a+b)Γ(a)Γ(b)证明:由Gamma函数的定义可知Γ(a)Γ(b)=∫0∞∫0∞xa−1yb−1e−(x+y)dxdy,\Gamma(a)\Gamma(b)=\int^{\infty}_{0}\int^{\infty}_{0}x^{a-1}y^{b-1}e^{-(x+y)}dxdy,Γ(a)Γ(b)=00xa1yb1e(x+y)dxdy,作变量变换x=uvx=uvx=uvy=u(1−v)y=u(1-v)y=u(1v),其雅可比行列式J=−uJ=-uJ=u。故Γ(a)Γ(b)=∫0∞∫01(uv)a−1[u(1−v)]b−1e−uududv=∫0∞ua+b−1e−udu∫01va−1(1−v)b−1dv=Γ(a+b)B(a,b)\begin{aligned}\Gamma(a)\Gamma(b)&=\int^{\infty}_0\int_0^1(uv)^{a-1}[u(1-v)]^{b-1}e^{-u}ududv\\&=\int^{\infty}_0u^{a+b-1}e^{-u}du\int^{1}_0 v^{a-1}(1-v)^{b-1}dv\\&=\Gamma(a+b)\mathrm{B}(a,b)\end{aligned}Γ(a)Γ(b)=001(uv)a1[u(1v)]b1euududv=0ua+b1eudu01va1(1v)b1dv=Γ(a+b)B(a,b)证毕。

Beta分布

若随机变量XXX的密度函数为p(x)={Γ(a+b)Γ(a)Γ(b)xa−1(1−x)b−1,0<x<1,0,其他,p(x)=\left\{\begin{array}{ll}\frac{\Gamma(a+b)}{\Gamma(a)\Gamma(b)}x^{a-1}(1-x)^{b-1},&0<x<1,\\0,&其他,\end{array}\right.p(x)={Γ(a)Γ(b)Γ(a+b)xa1(1x)b1,0,0<x<1,则称XXX服从Beta分布,记作X∼Beta(a,b)X \sim Beta(a,b)XBeta(a,b),其中a>0a>0a>0b>0b>0b>0都是形状参数。
 因为服从Beta分布Beta(a,b)Beta(a,b)Beta(a,b)的随机变量是仅在区间(0,1)(0,1)(0,1)取值的,所以不合格率,机器的维修率,市场占有率,射击的命中率等各种比率选用Beta分布作为它们的概率分布是恰当的,只要选择合适的参数aaabbb即可。

Beta分布Beta(a,b)Beta(a,b)Beta(a,b)的数学期望和方差

利用Beta函数的性质,不难算得Beta分布Beta(a,b)Beta(a,b)Beta(a,b)的数学期望为E(X)=Γ(a+b)Γ(a)Γ(b)∫01xa(1−x)b−1dx=Γ(a+b)Γ(a)Γ(b)⋅Γ(a+1)Γ(b)Γ(a+b+1)=aa+b\begin{aligned}\mathbb{E}(X)&=\frac{\Gamma(a+b)}{\Gamma(a)\Gamma(b)}\int^1_0 x^a(1-x)^{b-1}dx\\&=\frac{\Gamma(a+b)}{\Gamma(a)\Gamma(b)}\cdot\frac{\Gamma(a+1)\Gamma(b)}{\Gamma(a+b+1)}\\&=\frac{a}{a+b}\end{aligned}E(X)=Γ(a)Γ(b)Γ(a+b)01xa(1x)b1dx=Γ(a)Γ(b)Γ(a+b)Γ(a+b+1)Γ(a+1)Γ(b)=a+ba又因为E(X2)=Γ(a+b)Γ(a)Γ(b)∫01xa+1(1−x)b−1dx=Γ(a+b)Γ(a)Γ(b)⋅Γ(a+2)Γ(b)Γ(a+b+2)=a(a+1)(a+b)(a+b+1)\begin{aligned}\mathbb{E}(X^2)&=\frac{\Gamma(a+b)}{\Gamma(a)\Gamma(b)}\int_0^1x^{a+1}(1-x)^{b-1}dx\\&=\frac{\Gamma(a+b)}{\Gamma(a)\Gamma(b)}\cdot\frac{\Gamma(a+2)\Gamma(b)}{\Gamma(a+b+2)}\\&=\frac{a(a+1)}{(a+b)(a+b+1)}\end{aligned}E(X2)=Γ(a)Γ(b)Γ(a+b)01xa+1(1x)b1dx=Γ(a)Γ(b)Γ(a+b)Γ(a+b+2)Γ(a+2)Γ(b)=(a+b)(a+b+1)a(a+1)由此得到XXX的方差为Var(X)=a(a+1)(a+b)(a+b+1)−(aa+b)2=ab(a+b)2(a+b+1)\begin{aligned}\mathrm{Var}(X)&=\frac{a(a+1)}{(a+b)(a+b+1)}-\left(\frac{a}{a+b}\right)^2\\&=\frac{ab}{(a+b)^2(a+b+1)}\end{aligned}Var(X)=(a+b)(a+b+1)a(a+1)(a+ba)2=(a+b)2(a+b+1)ab

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

道2024

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值