线性规划强对偶证明

本文深入探讨了线性规划的弱对偶性和强对偶性原理,通过Farkas引理进行证明。线性规划的弱对偶性表明原始问题的最小值是对偶问题的上界,而强对偶性则揭示了在满足特定条件下,原始问题与对偶问题的最优解相等。Farkas引理作为证明工具,解释了如何通过几何直观理解这两个命题的对立关系。通过对线性规划理论的深入理解,有助于优化问题的求解策略和算法设计。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

线性规划弱对偶性

给定矩阵A∈Rm×nA\in \mathbb{R}^{m\times n}ARm×n,向量x,c∈Rnx,c\in \mathbb{R}^nx,cRn,向量b,y∈Rmb,y\in \mathbb{R}^mb,yRm,则有如下线性规划min⁡x{c⊤x∣Ax=b,x≥0}\min\limits_{x}\{c^{\top}x|Ax=b,x\ge 0\}xmin{cxAx=b,x0}其中x∗x^{*}x为以上线性规划的最小值,其对偶形式表示为max⁡y{b⊤y∣A⊤y≤c}\max\limits_{y}\{b^{\top}y|A^{\top}y\le c\}ymax{byAyc}在等式两边Ax∗=bAx^{*}=bAx=b同乘y⊤y^{\top}y,则有如下不等式成立y⊤b=y⊤Ax∗≤c⊤x∗ y^{\top}b=y^{\top}A x^{*}\le c^{\top}x^{*}yb=yAxcx进而则有max⁡y{b⊤y∣A⊤y≤c}≤min⁡x{c⊤x∣Ax=b,x≥0}\max\limits_{y}\{b^{\top}y|A^{\top}y \le c \}\le \min\limits_{x}\{c^{\top}x|Ax=b,x\ge 0\}ymax{byAyc}xmin{cxAx=b,x0}这个就是线性规划的弱对偶形式,即线性规划问题原始形式的最小值是其对偶形式的上界。

Farkas\mathrm{Farkas}Farkas引理

在证明线性规划的强对偶性之前,需要用到Farkas\mathrm{Farkas}Farkas引理

对于给定的矩阵A∈Rm×nA \in \mathbb{R}^{m \times n}ARm×n和向量b∈Rmb\in \mathbb{R}^mbRm,则如下两个命令对立成立

  • 命题1: 存在x∈Rnx \in \mathbb{R}^nxRnx≥0x \ge 0x0, 使得Ax=bAx=bAx=b
  • 命题2: 存在y∈Rmy \in \mathbb{R}^myRm使得A⊤x≤0A^{\top}x \le 0Ax0b⊤y>0b^{\top}y > 0by>0

以上两个命题同时有且只能有一个命题成立,即如果命题1成立,则命题2不能成立,反之。Farkas\mathrm{Farkas}Farkas引理的几何解释是,先考虑一个向量集合{Ax∣x∈Rn,x≥0}\{Ax|x\in\mathbb{R}^n, x \ge 0\}{AxxRn,x0}AAA看成nnnmmm维列向量的组合A=(a1,a2,⋯ ,an)A=(a_1,a_2,\cdots,a_n)A=(a1,a2,,an)以上集合实际上就是所有a1,a2⋯ ,ana_1,a_2\cdots,a_na1,a2,an的非负线性组合,其中以上集合的非负线性组合组成了一个锥体。给定一个mmm维的向量bbb,命题1说明向量bbb在矩阵AAA张成的锥体中(包括边界上),命题2说明向量bbb椎体外,如下图所示,

对于命题1来说,如果向量bbb在锥体内,它可以表示为向量a1,a2,⋯ ,ana_1,a_2,\cdots,a_na1,a2,,an的非负线性组合,存在非负系数x1,x2,⋯ ,xnx_1,x_2,\cdots,x_nx1,x2,,xn,则有b=x1a1+x2a2+⋯+xn−1an−1+xnanb=x_1 a_1+x_2a_2+\cdots+x_{n-1}a_{n-1}+x_n a_nb=x1a1+x2a2++xn1an1+xnan即存在向量x≥0x\ge 0x0,使得等式Ax=bAx=bAx=b成立。
对于命题2来说,如果向量bbb在锥体外,总可以找到一个向量yyy,它与锥体中的所有向量余弦值不大于0,即(a1⊤y,a2⊤y,⋯ ,an⊤y)≤0⟹A⊤y≤0(a^{\top}_1 y,a^{\top}_2 y,\cdots,a^{\top}_ny)\le 0 \Longrightarrow A^{\top}y \le 0(a1y,a2y,,any)0Ay0并且与向量bbb的余弦值大于0,即b⊤y>0b^{\top}y > 0by>0

线性规划强对偶性

线性规划初始问题min⁡x{c⊤x∣Ax=b,x≥0}\min\limits_{x}\{c^{\top}x|Ax=b,x\ge 0\}xmin{cxAx=b,x0}如果存在解x∗x^{*}x,其对偶形式max⁡y{b⊤y∣A⊤y≤c}\max\limits_{y}\{b^{\top}y|A^{\top}y\le c\}ymax{byAyc}也存在解y∗y^{*}y,且有c⊤x∗=b⊤y∗c^{\top}x^{*}=b^{\top}y^{*}cx=by

证明: 线性规划强对偶性可以利用Farkas\mathrm{Farkas}Farkas引理进行证明。令min⁡\minmin的最小值在x∗x^{*}x处取到,即z∗=c⊤xz^{*}=c^{\top}xz=cx,假定有如下向量A^=(A−c⊤),b^c=(b−z∗+ε),y^=(yα)\hat{A}=\left(\begin{array}{c}A\\-c^{\top}\end{array}\right),\quad \hat{b}_c=\left(\begin{array}{c}b\\-z^{*}+\varepsilon\end{array}\right),\quad \hat{y}=\left(\begin{array}{c}y\\\alpha\end{array}\right)A^=(Ac),b^c=(bz+ε),y^=(yα)其中ε>0\varepsilon>0ε>0,对于任意x≥0x \ge 0x0A^x\hat{A}xA^x都不可能等于b^c\hat{b}_cb^c,因为c⊤x∗=z∗c^{\top}x^{*}=z^{*}cx=z已经时最小值,所以−z∗-z^{*}z−c⊤x-c^{\top}xcx能达到的最大值,它不可能等于更大的−z∗+ε-z^{*}+\varepsilonz+ε。根据Farkas\mathrm{Farkas}Farkas引理,因为不满足命题1,所以满足命题2,令向量y^=(yα)\hat{y}=\left(\begin{array}{c}y\\\alpha\end{array}\right)y^=(yα),使得A^⊤y^≤0\hat{A}^{\top}\hat{y}\le 0A^y^0b^ϵ⊤y^>0\hat{b}^{\top}_{\epsilon}\hat{y}>0b^ϵy^>0,这等价于A⊤y≤αc,b⊤y>α(z∗−ε)A^{\top}y\le \alpha c,\quad b^{\top}y > \alpha(z^{*}-\varepsilon)Ayαc,by>α(zε)因为b^ε⊤y^=b^0y^+αε>0\hat{b}^{\top}_{\varepsilon} \hat{y}=\hat{b}_0 \hat{y}+\alpha \varepsilon > 0b^εy^=b^0y^+αε>0对于任意x≥0x \ge 0x0A^x∗=b^0\hat{A}x^{*}=\hat{b}_0A^x=b^0,此时以上条件满足命题1,所以就不会满足命题2,则意味着∀A^⊤y^≤0\forall \hat{A}^{\top} \hat{y}\le 0A^y^0,都有b^0⊤y^≤0\hat{b}_0^{\top}\hat{y}\le 0b^0y^0,又因为b^0⊤y^+αε>0\hat{b}_0^{\top}\hat{y}+\alpha \varepsilon>0b^0y^+αε>0,所以必有α>0\alpha>0α>0。综上所述则有A⊤(y/α)≤c,b⊤(y/α)≤z∗−cA^{\top}(y/\alpha)\le c,\quad b^{\top}(y/\alpha)\le z^{*}-cA(y/α)c,b(y/α)zc进而则有max⁡y{b⊤y∣A⊤y≤c}>z∗−ε\max\limits_{y}\{b^{\top}y|A^{\top}y \le c\}> z^{*}-\varepsilonymax{byAyc}>zε又由弱对偶性可知z∗≥max⁡y{b⊤y∣A⊤y≤c}z^{*}\ge \max\limits_y\{b^{\top}y|A^{\top}y\le c\}zymax{byAyc}利用极限中的夹逼定理则有max⁡y{b⊤y∣A⊤y≤c}=z∗=min⁡x{c⊤x∣Ax=b,x≥0}\max\limits_y\{b^{\top}y|A^{\top}y\le c\}=z^{*}=\min\limits_{x}\{c^{\top}x|Ax=b,x\ge0\}ymax{byAyc}=z=xmin{cxAx=b,x0}这便是线性规划的强对偶形式。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

道2024

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值