目录
作用
用来预测分类,与朴素贝叶斯分类不同,贝叶斯获得的是离散值,最后通过比较离散值界定分类,逻辑回归根据区间进行分类。
模型函数
- 设
- 则:
- 当
,
,当
,
逻辑回归的目标函数
- 训练 h(x) 的过程,就是求 θ 的过程。
- 当 y>0.5 时,z 被归类为真(True)或阳性(Positive),当 y<=0.5 时,z 被归类为假(False)或阴性(Negative)
- LR也能处理多分类问题
因为
所以即是x属于阳性的概率。
,
由二项分布式可得:
设训练集一共有 m 个数据,那么这 m 个数据的联合概率就是:
我们求取 θ 的结果,就是让这个 L(θ) 达到最大。即让阳性数据属于阳性的概率最大。
使用极大似然估计法:
转变为凸函数:
优化目标是最小化J(θ),使用梯度下降法。
优化过程:
J(θ) 对 θ 求导:
因为:
运用链式法则,有:
将上式带入上面的 J(θ) 求导式子里,有:
当 x 为多维的时候(设 x 有 n 维),则在对 z=θx 求导的时候,要对 x的每一个维度求导。
又因为 θ和 x 维度相同,所以当 x 有 n 维的时候,θ 同样是有 n 维的。则 J(θ) 的求导也变成了对 θ 的每一个维度求导:
优化算法伪代码:
设: θ0,α
while (不收敛)
{
θj:=θj+α∑mi=1(y(i)−hθ(x(i)))x(i)j
}