理解贝叶斯公式 P(A|B)P(B)=P(A)P(B|A)

本文通过级联图的方式深入解析了贝叶斯公式的应用,详细展示了如何利用已知条件概率来推导未知事件的概率,通过具体实例说明了即使在B变量变化的情况下,对A的影响依然保持不变。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

贝叶斯公式应该画级联的图来理解
贝叶斯
明确
P(A=0) = 0.5
P(B=0|A=0) = 0.6
P(B=0) = 0.6*0.5 + 0.25*0.6 + 0.25*0.6 = 0.6
则应用贝叶斯公式
P(A=0|B=0) = P(A=0)P(B=0|A=0) / P(B=0) = 0.5*0.6/0.6 = 0.5

明确
P(A=1) = 0.25
P(B=0|A=1) = 0.6
P(B=0) = 0.6*0.5 + 0.25*0.6 + 0.25*0.6 = 0.6
则应用贝叶斯公式
P(A=1|B=0) = P(A=1)P(B=0|A=1) / P(B=0) = 0.25*0.6/0.6 = 0.25

明确
P(A=2) = 0.25
P(B=0|A=2) = 0.6
P(B=0) = 0.6*0.5 + 0.25*0.6 + 0.25*0.6 = 0.6
则应用贝叶斯公式
P(A=2|B=0) = P(A=2)P(B=0|A=2) / P(B=0) = 0.25*0.6/0.6 = 0.25

可以看出B无论是0还是1,不影响A,合理

结论:

贝叶斯公式应该画级联的图来理解

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

-Love-Coding-

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值