Learning To Rank 理解

本文探讨了如何从第一原理出发设计一个搜索排序的深度学习模型,重点关注如何评估查询(query)与文档(doc)的匹配度。模型通过PointWise、PairWise和ListWise三种方式为doc打分并进行排序。PairWise方法中,模型需基于query和两个doc来判断相对得分,而ListWise则允许模型一次性为多个doc和query给出整体评分。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

设想自己从First Principle来设计一个搜索排序的(深度学习)模型,核心还是在于有个模型能给当前query和每个候选doc的匹配程度打分,也就是核心是两个 句子/文档 的匹配程度的打分模型,
那么我需要有个模型,给一个query,和一堆要排序的doc,就可以给每个doc都打一个和query匹配程度的分值,然后按高到低排序,

这时,可以一个doc一个doc的打分,也就是每次输入模型一个query+候选doc里的一个doc,打一个分,即所谓的PointWise

也可以输入全部doc候选里任意两个doc,让模型通过训练判断这两个doc哪个分高,然后”冒泡排序”所有doc,即所谓的PairWise,但仔细想想,如果模型只输入doc1和doc2是不行的,应该输入query+doc1+doc2,而不只是doc1+doc2

最后可以设计模型的loss函数和输入,让多个doc一起输入,+一个query输入一个模型一次全部打一个分,即所谓的ListWise

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

-Love-Coding-

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值