TFIDF实例及讲解

本文深入解析TF-IDF算法,通过实例展示其工作原理。重点讨论词频(Term Frequency, TF)和逆文档频率(Inverse Document Frequency, IDF),并解释如何结合两者计算单词的重要性。" 124416588,7445085,嵌入式EC:PS/2触摸板通信解析,"['嵌入式硬件', '驱动开发', 'arm', 'linux']

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

tfidf

其中右边的term count是一个词在一句话中的出现次数,其中example出现3次,不是在所有文档中出现3次,是在这句话中3次,term count就是统计后的,右图两句话实际应该是
this is a a sample
this is another another example example example

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

-Love-Coding-

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值