简述一下生成对抗网络GAN(Generative adversarial nets)模型?

生成对抗网络GAN是一种由生成器和判别器组成的机器学习架构,用于非监督式学习。生成器尝试生成逼真的数据,而判别器试图区分真实数据和生成数据。两者间的对抗性训练提升了生成模型的性能,使其能生成以假乱真的图像等。GAN在图像生成、数据增强等领域有广泛应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

简述一下生成对抗网络GAN(Generative adversarial nets)模型?

 

生成对抗网络GAN是由蒙特利尔大学Ian Goodfellow在2014年提出的机器学习架构。

要全面理解生成对抗网络,首先要理解的概念是监督式学习和非监督式学习。监督式学习是指基于大量带有标签的训练集与测试集的机器学习过程,比如监督式图片分类器需要一系列图片和对应的标签(“猫”,“狗”…),而非监督式学习则不需要这么多额外的工作,它们可以自己从错误中进行学习,并降低未来出错的概率。监督式学习的缺点就是需要大量标签样本,这非常耗时耗力。非监督式学习虽然没有这个问题,但准确率往往更低。自然而然地希望能够通过提升非监督式学习的性能,从而减少对监督式学习的依赖。GAN可以说是对于非监督式学习的一种提升。

第二个需要理解的概念是“生成模型”, 如下图所示生成图片模型的概念示意图。这类模型能够通过输入的样本产生可能的输出。举个例子,一个生成模型可以通过视频的某一帧预测出下一帧的输出。另一个例子是搜索引擎,在你输入的同时,搜索引擎已经在推断你可能搜索的内容了。

preview

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Data+Science+Insight

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值