R分层抽样(Stratified Sampling)

本文介绍了R语言中进行分层抽样的方法,包括基于行数的分层抽样和基于行数比例的分层抽样。通过实例演示了如何使用dplyr包的group_by()和sample_n()、sample_frac()函数来抽取具有代表性的样本。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

R分层抽样(Stratified Sampling)

目录

R分层抽样(Stratified Sampling)

R分层抽样

基于行数的分层抽样

基于行数比例的分层抽样


研究人员通常从一个总体(population)中提取样本(sample),并利用样本(sample)中的数据得出关于整个总体(population)的结论。

一种常用的抽样方法是分层随机抽样(Stratified Sampling),将一个群体分成几组(group),从每组中随机选择一定数量的成员纳入样本集中,这样获得的训练集和测试集都具有代表性。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Data+Science+Insight

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值