Using Multiple Quadcopters To Efficiently Lift Loads Together

Much like calling over a buddy or two to help with moving a large piece of furniture and pivot it up a narrow flight of stairs, so too can quadcopters increase their carrying capacity through the power of friendship and cooperation. However, unless you want to do a lot of yelling at your mates about when to pivot and lift, you’d better make sure that your coordination is up to snuff. The same is true with quadcopters, where creating an efficient coordination algorithm for sharing a load is far from easy and usually leads to fairly slow and clumsy maneuvering.

Simplified overview of the motion planner by Sihao Sun et al.
Simplified overview of the motion planner by Sihao Sun et al.

Recently. researchers at the Technical University of Delft came up with what appears to be a quite efficient algorithm for this purpose. In the demonstration video below, it’s easy to see how the quadcopters make short work of even convoluted obstacles while keeping themselves and their mates from getting tangled.

The research by [Sihao Sun] et al. appears in Science Robotics (preprint), in which they detail their trajectory-based framework and its kinodynamic motion planner. In short, this planner considers the whole-body dynamics of the load, the cables, and the quadcopters. An onboard controller for each quadcopter is responsible for translating the higher-level commands into specific changes to its rotor speeds and orientation.

Along with tests of its robustness to various environmental factors, such as wind, the researchers experimented with how many simultaneous quadcopters could work together with their available computing capacity. The answer, so far, is nine units, though they think that the implementation can be further optimized.

Of course, sometimes you just want to watch synchronized drones.

Continue reading “Using Multiple Quadcopters To Efficiently Lift Loads Together”

EVTOL For Everyone

While most of the world’s venture capital is off chasing anything with “AI” in the name in what many think looks increasingly like an inflated spherical film of soap molecules, in aviation all the hot money is betting on eVTOL: electric vertical take off and landing.

What if you want to get in on the eVTOL game but don’t have (or want) billionaire backing? Long-time contributor [spiritplumber] demonstrates how to do it on the cheap, with a low-cost quadcopter and a foam wing called Lift5. 

Most eVTOL isn’t just quadcopters, after all — multirotors are great for playing with in the back yard, but their thrust-based lift makes for short range, and the engine-out options are all bad. Add a wing, and you can get that sweet, sweet dynamic lift. Add an extra, forward facing motor, and you can get thrust in the direction you need it most. That’s what [spiritplumber] is doing here: strapping a foam wing to a cheap quadcopter. Specifically, his custom frame for an Eiele F120 drone kit.You can see it in action in the demo video embedded below.

The wing and its forward thrust motor are equipped with its own speed controller, so the concept should be adaptable to just about any little drone. Quadcopter flight computers are mostly going to be able to compensate for the added lift and thrust automatically, which is neat, considering that these forces would require some bizarre headwind/updraft very unlikely to be found in nature.

Now the wing does add a lot of drag during the lift phase, to be sure, so [spiritplumber] is working on folding or tilting it out of the way, but that version is apparently inordinately fond of trees. Once the control issues are worked out you’ll likely see it on his site and YouTube channel Robots Everywhere.

[spiritplumber] has been contributing hacks here at least since 2009, when he showed us how to make a Macbook right click.

Continue reading “EVTOL For Everyone”

X-wing Aircraft Are Trickier Than They Look

The iconic X-wing ship design from Star Wars is something many a hobbyist have tried to recreate, and not always with success. While [German engineer] succeeded in re-imagining an FPV quadcopter as an X-wing fighter, the process also highlighted why there have been more failures than successes when it comes to DIY X-wing aircraft.

For one thing, the X-wing shape is not particularly aerodynamic. It doesn’t make a very good airplane. Quadcopters on the other hand rely entirely on precise motor control to defy gravity in a controlled way. It occurred to [German engineer] that if one tilts their head just so, an X-wing fighter bears a passing resemblance to a rocket-style quadcopter layout, so he set out to CAD up a workable design.

When flying at speed, the aircraft goes nearly horizontal and the resemblance to an X-wing fighter is complete.

One idea that seemed ideal but ultimately didn’t work was using four EDF (electric ducted fan) motors mounted in the same locations as the four cylindrical engines on an X-wing. Motors large enough to fly simply wouldn’t fit without ruining the whole look. A workable alternative ended up being the four props and brushless motors mounted on the ends of the wings, like you see here.

The unit still needed a lot of fine tuning to get to a properly workable state, but it got there. It takes off and lands vertically, like a classical quadcopter, but when flying at speed it levels out almost completely and looks just like an X-wing as it screams by. It’s in sharp contrast to the slow, methodical movements of this Imperial Shuttle drone.

There are also a couple design elements in [German engineer]’s build we thought were notable. The spring-loaded battery door (all 3D-printed, including the spring) looks handy and keeps the lines of the aircraft clean. And since it’s intended to be flown as an FPV (first person view) aircraft, the tilting camera mount in the nose swings the camera 90 degrees during takeoff and landing to make things a little easier on the pilot.

3D models for the frame (along with a parts list) are up for anyone who wants to give it a shot. Check it out in the video, embedded below.

Continue reading “X-wing Aircraft Are Trickier Than They Look”

POV Globe Takes To The Skies

LED billboards are cyberpunk-dystopian enough for most, but it can get worse. For example, this project by [Concept Crafted Creations] that takes the whole concept and takes it airborn (literally) in the form of a flying POV sphere called “Zippy”.

We love persistence-of-vision (POV) displays, and have featured plenty before, from the very complicated to the fairly simple. The idea is simple: take one or more rings of LEDs and spin them rapidly enough that the persistence-of-vision effect creates a solid image in your visual field. We covered the basics years back. “Zippy” has one ring of addressable LEDs that surrounds the thing that makes it unique: the quadcopter at its core. None of those other projects could fly, after all.

You might imagine a big, spinning ring is going to have a lot of torque to cancel out, and that is true — about 2.3 kgf — and it led to a lot of prototypes crashing early on. After trying to use flaps to direct the downwash of the quadcopter rotors to counter the spin, [Concept Crafted Creations] eventually added two extra props for yaw control, and that seemed to do the trick. We say “quadcopter” because that’s the configuration, but Zippy ended up heavy and needs eight lift motors to fly. PVC pipe and PLA aren’t the lightest build materials, after all. That’s ten props, total, plus another outrunner to spin the POV ring. All those motors, plus the current draw of the LEDs means the flight time might not impress — but Zippy sure does, at last as long as the batteries hold out.

There’s something eye-catching about POV displays, and seeing this one drifting upwards like Kang and Kodos decided to steal the Los Vegas Sphere is even more arresting. That made the crash at the end of the video sad to see, but [Concept Crafted Creations] hasn’t ruled out rebuilding it if his viewers show enough interest. So if you like what you see, head over to YouTube and leave an encouraging comment for him to try, try again. Continue reading “POV Globe Takes To The Skies”

Making The Tiny Air65 Quadcopter Even Smaller

First person view (FPV) quadcopter drones have become increasingly more capable over the years, as well as much smaller. The popular 65 mm format, as measured from hub to hub, is often considered to be about the smallest you can make an FPV drone without making serious compromises. Which is exactly why [Hoarder Sam] decided to make a smaller version that can fit inside a Pringles can, based on the electronics used in the popular Air65 quadcopter from BetaFPV.

The 22 mm FPV drone with camera installed and looking all cute. (Credit: Hoarder Sam)
The 22 mm FPV drone with camera installed and looking all cute. (Credit: Hoarder Sam)

The basic concept for this design is actually based on an older compact FPV drone design called the ‘bone drone’, so called for having two overlapping propellers on each end of the frame, thus creating a bone-like shape. The total hub-to-hub size of the converted Air65 drone ends up at a cool 22 mm, merely requiring a lot of fiddly assembly before the first test flights can commence. Which raises the question of just how cursed this design is when you actually try to fly with it.

Obviously the standard BetaFPV firmware wasn’t going to fly, so the next step was to modify many parameters using the Betaflight Configurator software, which unsurprisingly took a few tries. After this, the fully loaded drone with camera and battery pack, coming in at a whopping 25 grams, turns out to actually be very capable. Surprisingly, it flies not unlike an Air65 and has a similar flight time, losing only about 30 seconds of the typical three minutes.

With propellers sticking out at the top and bottom – with no propeller guards – it’s obviously a bit of a pain to launch and land. But considering what the donor Air65 went through to get to this stage, it’s honestly quite impressive that this extreme modification mostly seems to have altered its dimensions.

Continue reading “Making The Tiny Air65 Quadcopter Even Smaller”

Drones At Danish Airports, A Plea For Responsible Official Response

In Europe, where this is being written, and possibly further afield, news reports are again full of drone sightings closing airports. The reports have come from Scandinavia, in particular Denmark, where sightings have been logged across the country. It has been immediately suggested that the Russians might somehow be involved, something they deny, which adds a dangerous geopolitical edge to the story.

To us here at Hackaday, this is familiar territory. Back in the last decade, we covered the saga of British airports closing due to drone sightings. In that case, uninformed hysteria played a large part in the unfolding events, leading to further closures. The problem was that the official accounts did not seem credible. Eventually, after a lot of investigation and freedom of information requests by the British drone community, there was a shamefaced admission that there had never been any tangible evidence of a drone being involved.

Continue reading “Drones At Danish Airports, A Plea For Responsible Official Response”

Full Scale Styrofoam DeLorean Finally Takes Flight

It’s 2025 and we still don’t have flying cars — but we’ve got this full-scale flying DeLorean prop from [Brian Brocken], and that’s almost as good. It’s airborne and on camera in the video embedded below.

We’ve written about this project before; first about the mega-sized CNC router [Brian] used to carve the DeLorean body out of Styrofoam panels, and an update last year that showed the aluminum frame and motorized louvers and doors.

Well, the iconic gull-wing doors are still there, and still motorized, and they’ve been joined by a tire-tilting mechanism for a Back To The Future film-accurate flight mode. With the wheels down, the prop can use them to steer and drive, looking for all the world like an all-white DMC-12.

The aluminum frame we covered before is no longer in the picture, though. It’s been replaced by a lighter, stiffer version made from carbon fibre. It’s still a ladder frame, but now with carbon fiber tubes and “forged” carbon fiber corners made of tow and resin packed in 3D printed molds. There’s been a tonne of work documented on the build log since we last covered this project, so be sure to check it out for all the details.

Even in unpainted white Styrofoam, it’s surreal to see this thing take off; it’s the ultimate in practical effects, and totally worth the wait. Honestly, with talent like [Brian] out there its a wonder anyone still bothers with CGI, economics aside.

Thanks to [Brian] for the tip! If you have a project you’ve hit a milestone with, we’d love to see it, even if it doesn’t trigger the 80s nostalgia gland we apparently all have embedded in our brains these days. Send us a tip!

Continue reading “Full Scale Styrofoam DeLorean Finally Takes Flight”