SPACEdeck Is Half Cyberdeck, Half Phone Case, All Style

It’s been at least a few hours since Hackaday last featured a cyberdeck, so to avoid the specter of withdrawal, we present you with [Sp4m]’s SPACEdeck, a stylish phone-based cyberdeck!

The case features a great message in an even better font.The SPACEdeck takes a Samsung Galaxy S24 and puts it into a handsome clamshell case with a wireless keyboard, turning the phone into a tiny-screened laptop that urges you not to panic. Is The Hitchiker’s Guide to The Galaxy available on the Playstore? Well, the e-book of the novel surely is, and having access to Wikipedia comes close. The design is building off (or out from, as the case may be) a 3D-printed phone case for the S24 by Digital Proto.

Given that the Galaxy S24 has more horsepower than the ancient Macbook we’re writing this on, this setup is probably going to be more useful than you might think, especially when paired with Termux to give you the full power of Linux.

Like some modern laptops, the screen can rotate 180 degrees for when the keyboard isn’t needed. The case will also allow for Nintendo Switch2 joycon integration, but that’s a work in progress for now. The connection points will also be modular so other accessories can be used. All files will be released once [Sp4m] is happy with how the Joycons are holding on, hopefully with a license that will allow us to remix this for other phones.

Given the supercomputers in our pockets, it’s really a wonder we don’t see more android-based cyberdecks, but most seem to stick to SBCs. Lately it seems the slabtop form-factor has been equally popular for cyberdecks, but it’s hard to beat a clamshell for practicality.

2025 Pet Hacks Contest: Feline Facial Recognition Foils Food Filching

Cats are no respecters of personal property, as [Joe Mattioni] learned when one of his cats, [Layla] needed a special prescription diet. Kitty didn’t care for it, and since the other cat, [Foxy]’s bowl was right there– well, you see where this is going. To keep [Layla] out of [Foxy]’s food and on the vet-approved diet, [Joe] built an automatic feeding system with feline facial recognition. As you do.

The hardware consists of a heavily modified feed bowl with a motorized lid that was originally operated by motion-detection, an old Android phone running a customized TensorFlow Lite model, and hardware to bridge them together. Bowl hardware has yet to be documented on [Joe]’s project page, aside from the hint that an Arduino (what else?) was involved, but the write up on feline facial recognition is fascinating.

See, when [Joe] started the project, there were no cat-identifying models available– but there were lots of human facial recognition models. Since humans and cats both have faces, [Joe] decided to use the MobileFaceNet model as a starting point, and just add extra training data in the form of 5000 furry feline faces. That ran into the hurdle that you can’t train a TFLite model, which MobileFaceNet is, so [Joe] reconstructed it as a Keras model using Google CoLab. Only then could the training occur, after which the modified model was translated back to TFLite for deployment on the Android phone as part of a bowl-controller app he wrote.

No one, [Joe] included, would say that this is the easiest, fastest, or possibly even most reliable solution– a cat smart enough not to show their face might sneak in after the authorized feline has their fill, taking advantage of a safety that won’t close a bowl on a kitty’s head, for example–but that’s what undeniably makes this a hack. It sounds like [Joe] had a great learning adventure putting this together, and the fact that it kept kitty on the proper diet is really just bonus.

Want to go on a learning adventure of your own? Click this finely-crafted link for all the details about this ongoing contest.

 

An Open-Source Wii U Gamepad

Although Nintendo is mostly famous for making great games, they also have an infamous reputation for being highly litigious not only for reasonable qualms like outright piracy of their games, but additionally for more gray areas like homebrew development on their platforms or posting gameplay videos online. With that sort of reputation it’s not surprising that they don’t release open-source drivers for their platforms, especially those like the Wii U with unique controllers that are difficult to emulate. This Wii U gamepad emulator seeks to bridge that gap.

The major issue with the Wii U compared to other Nintendo platforms like the SNES or GameCube is that the controller looks like a standalone console and behaves similarly as well, with its own built-in screen. Buying replacement controllers for this unusual device isn’t straightforward either; outside of Japan Nintendo did not offer an easy path for consumers to buy controllers. This software suite, called Vanilla, aims to allow other non-Nintendo hardware to bridge this gap, bringing in support for things like the Steam Deck, the Nintendo Switch, various Linux devices, or Android smartphones which all have the touch screens required for Wii U controllers. The only other hardware requirement is that the device must support 802.11n 5 GHz Wi-Fi.

Although the Wii U was somewhat of a flop commercially, it seems to be experiencing a bit of a resurgence among collectors, retro gaming enthusiasts, and homebrew gaming developers as well. Many games were incredibly well made and are still experiencing continued life on the Switch, and plenty of gamers are looking for the original experience on the Wii U instead. If you’ve somehow found yourself in the opposite position of owning of a Wii U controller but not the console, though, you can still get all the Wii U functionality back with this console modification.

Thanks to [Kat] for the tip!

Using A Smartphone As A Touchscreen For Arduino

If you want a good display and interface device for an embedded project, it’s hard to look past an old smartphone. After all, you’ve got an excellent quality screen and capacitive touch interface all in the same package! [Doctor Volt] explains how to easily set up your old smartphone to work as a touchscreen for your Arduino.

[Doctor Volt] demonstrates the idea with a 2018 Samsung Galaxy A8, though a wide variety of Android phones can be put to use in this way. The phone is connected to the Arduino via a USB-to-serial converter and an OTG cable. Using a USB-C phone with Power Delivery is ideal here, as it allows the phone to be powered while also communicating with the Arduino over USB.

The RemoteXY app is built specifically for this purpose. It can be installed on an Android phone to allow it to communicate effectively with Arduino devices, which run the RemoteXY library in turn. Configuring the app is relatively straightforward, with a point-and-click wizard helping you designate what hardware you’re using and how you’ve got it hooked up. [Doctor Volt] does a great job of explaining how to hook everything up, and how to build some simple graphical interfaces.

There are a ton of display and interface options in the embedded space these days, many of which can be had cheaply off the shelf. Still, few compete with the resolution and quality of even older smartphones. It’s a neat project that could come in very handy for your next embedded build! Video after the break.

Continue reading “Using A Smartphone As A Touchscreen For Arduino”

Smartphone Runs Home Server

It’s one of the great tragedies of our technological era. Smartphones that feature an incredible amount of computational power compared to computers the past, are largely locked down by carriers or manufacturers, dooming them to performing trivial tasks far below their true capabilities.

But there is hope. In part one of this build, a OnePlus 6T is stripped of its Android operating system in favor of postmarketOS, a Linux distribution based on Alpine designed for a number of Android phones and tablets as well as some Linux-only handhelds. The guide also demonstrates how to remove the battery and use a modified USB-C cable to essentially trick the battery management system into powering up the phone anyway. The second part of the project dives into the software side, getting the Linux system up and running before installing Docker and whichever Docker containers the user needs.

There are a few downsides to running a server from a smartphone. Although there’s plenty of processing power available for a wide range of applications, most phones won’t have Ethernet support out-of-the-box which forces the use of WiFi. There’s also limited storage options available, so a large NAS system may be out of reach. But for something like a home automation system or a music streaming server this could put plenty of older devices to work again. And if you don’t want to hunt for an Android phone that isn’t completely hobbled out-of-the box you might want to try a phone that’s Linux-based from the get-go instead.

Thanks to [JohnU] for the tip!

Reusing An Old Android Phone For GPIO With External USB Devices

Each year millions of old smartphones are either tossed as e-waste or are condemned to lie unloved in dusty drawers, despite the hardware in them usually being still perfectly fine. Reusing these little computers for another purpose once the phone’s manufacturer drops support is made hard by a range of hardware and software (driver) issues. One possible way to do so is suggested by [Doctor Volt] in a video where a Samsung Galaxy S4 is combined with a USB-connected FT232R board to add external GPIO.

The idea is pretty simple: the serial adapter is recognized by the existing Android OS and within the standard Android development environment this module can be used. Within this demonstrator it’s merely used to blink some LEDs and react to inputs, but it shows how to reuse one of these phones in a non-destructive manner. Even better is that the phone’s existing sensors and cameras can still be used as normal in this way, too, which opens a whole range of (cheap) DIY projects that can be programmed either in Java/Kotlin or in C or C++ via the Native Development Kit.

The only wrinkle is that while the phone is connected like this, charging is not possible. For the S4 it’s easy to solve as it has a removable battery, so an external power input was wired in with a dummy battery-sized bit of perfboard. With modern phones without removable batteries simultaneous USB/audio dongle and charging usage via the USB-C connector is claimed to be possible, but this is something to check beforehand.

Continue reading “Reusing An Old Android Phone For GPIO With External USB Devices”

A Clean Linux Installation For An Android TV Box

Although Android technically runs on top of Linux, generally most Android devices abstract away the underlying Linux-ness of these machines. In theory this is a good thing; we wouldn’t necessarily want to live in a world where we have to log in to a command-line interface just to make a phone call. But too much abstraction often needlessly restricts the capabilities of the underlying hardware. [Murray] a.k.a [Green Bug-Eyed Monster] has an Android TV box with just such a problem, as the Android OS included with it allows for watching TV just fine, but with a few tweaks it can run a full Linux installation instead, turning it into a much more versatile machine.

This specific Android TV box is based on the Rockchip 3566, a popular single-board computer used in a wide array of products. As such it is one of the easier targets for transforming a limited TV machine into a fully capable desktop computer. The first step is to compile an Armbian image for the machine, in this case using an x86 installation of Ubuntu to cross-compile for the ARM-based machine. With a viable image in hand, there’s an option to either solder on a microSD slot to the included pins on the computer’s PCB or to flash the image directly to the on-board eMMC storage by tricking the machine into thinking that the eMMC is missing. Either option will bring you into a full-fledged Linux environment, with just a few configuration steps to take to get it running like any other computer.

[Murray] began this process as an alternative to paying the inflated prices of Raspberry Pis over the past few years, and for anyone in a similar predicament any computer with the Rockchip 3566 processor in it could be a potential target for a project like this. You might need to make a few tweaks to the compile options and hardware, but overall the process should be similar. And if you don’t have an RK3566, don’t fret too much. We’ve seen plenty of other Android TV boxes turned into similar devices like this one which runs RetroPie instead.