FreeCAD Foray: Good Practices

Last time, we built a case for a PCB that handles 100 W of USB-C power, an old project that I’ve long been aiming to revive. It went well, and I’d like to believe you that the article will give you a much-needed easy-to-grasp FreeCAD introduction, Matrix knowledge upload style, having you designing stuff in no time.

Apart from my firm belief in the power of open-source software, I also do believe in social responsibilities, and I think I have a responsibility to teach you some decent FreeCAD design practices I’ve learned along the way. Some of them are going to protect your behind from mistakes, and some of them will do that while also making your project way easier to work with, for you and others.

You might not think the last part about “others” matters, but for a start, it matters in the ideal world that we’re collectively striving towards, and also, let’s be real, things like documentation are half intended for external contributors, half for you a year later. So, here’s the first FreeCAD tip that will unquestionably protect you while helping whoever else might work with the model later.

Okay, we’re all hackers, so I’ll start with zero-th FreeCAD tip – press Ctrl+S often. That’ll help a ton. Thankfully, FreeCAD’s autorecovery system has made big leaps, and it’s pretty great in case FreeCAD does crash, but the less you have to recover, the better. Now, onto the first tip.

Continue reading “FreeCAD Foray: Good Practices”

FreeCAD Foray: From Brick To Shell

Over a year ago, we took a look at importing a .step file of a KiCad PCB into FreeCAD, then placing a sketch and extruding it. It was a small step, but I know it’s enough for most of you all, and that brings me joy. Today, we continue building a case for that PCB – the delay is because I stopped my USB-C work for a fair bit, and lost interest in the case accordingly, but I’m reviving it now.

Since then, FreeCAD has seen its v 1.0 release come to fruition, in particular getting a fair bit of work done to alleviate one of major problems for CAD packages, the “topological naming problem”; we will talk about it later on. The good news is, none of my tutorial appears to have been invalidated by version 1.0 changes. Another good news: since version 1.0, FreeCAD has definitely become a fair bit more stable, and that’s not even including some much-needed major features.

High time to pick the work back up, then! Let’s take a look at what’s in store for today: finishing the case in just a few more extrusions, explaining a few FreeCAD failure modes you might encounter, and giving some advice on how to make FreeCAD for you with minimum effort from your side.

Continue reading “FreeCAD Foray: From Brick To Shell”

Software In Progress

Open source software can be fantastic. I run almost exclusively open software, and have for longer than I care to admit. And although I’m not a serious coder by an stretch, I fill out bug reports when I find them, and poke at edge cases to help the people who do the real work.

For 3D modeling, I’ve been bouncing back and forth between OpenSCAD and FreeCAD. OpenSCAD is basic, extensible, and extremely powerful in the way that a programming language is, and consequently it’s reliably bug-free. But it also isn’t exactly user friendly, unless you’re a user who likes to code, in which case it’s marvelous. FreeCAD is much more of a software tool than a programming language, and is a lot more ambitious than OpenSCAD. FreeCAD is also a program in a different stage of development, and given its very broad scope, it has got a lot of bugs.

I kept running into some really serious bugs in a particular function – thickness for what it’s worth – which is known to be glitchy in the FreeCAD community. Indeed, the last time I kicked the tires on thickness, it was almost entirely useless, and there’s been real progress in the past couple years. It works at least sometimes now, on super-simple geometries, and this promise lead me to find out where it still doesn’t work. So I went through the forums to see what I could do to help, and it struck me that some people, mostly those who come to FreeCAD from commercial programs that were essentially finished a decade ago, have different expectations about the state of the software than I do, and are a lot grumpier.

Open source software is working out its bugs in public. Most open source is software in development. It’s growing, and changing, and you can help it grow or just hang on for the ride. Some open-source userland projects are mature enough that they’re pretty much finished, but the vast majority of open-source projects are coding in public and software in progress.

It seems to me that people who expect software to be done already are frustrated by this, and that when we promote super-star open projects like Inkscape or Blender, which are essentially finished, we are doing a disservice to the vast majority of useful, but still in progress applications out there that can get the job done anyway, but might require some workarounds. It’s exactly these projects that need our help and our bug-hunting, but if you go into them with the “finished” mentality, you’re setting yourself up for frustration.

Optical illusion gingerbread house from an odd perspective

An Engineer’s Perspective On Baking Gingerbread Houses

If you’ve ever wanted to merge the worlds of holiday cheer and clever geometry, [Kris Wilk]’s gingerbread house hack is your ultimate inspiration. Shared in a mesmerising video, [Wilk] showcases his 2024 entry for his neighborhood’s gingerbread house contest. Designed in FreeCAD and baked to perfection, this is no ordinary holiday treat. His pièce de résistance was a brilliant trompe l’oeil effect, visible only from one carefully calculated angle. Skip to the last twenty seconds of the video to wrap your head around how it actually looks.

[Wilk] used FreeCAD’s hidden true perspective projection function—a rarity in CAD software. This feature allowed him to calculate the perfect forced perspective, essential for crafting the optical illusion. The supporting structures were printed on a Prusa MK4, while the gingerbread itself was baked at home. Precision photography captured the final reveal, adding a professional touch to this homemade masterpiece. [Wilk]’s meticulous process highlights how accessible tools and a sprinkle of curiosity can push creative boundaries.

For those itching to experiment with optical illusions, this bakery battle is only the beginning. Why not build a similar one inside out? Or construct a gingerbread man in the same way? Fire up the oven, bend your mind, and challenge your CAD skills!

Continue reading “An Engineer’s Perspective On Baking Gingerbread Houses”

FreeCAD Version 1.0 Released

After 22 years of development, FreeCAD has at long last reached the milestone of version 1.0. On this momentous occasion, it’s good to remember what a version 1.0 is supposed to mean, as also highlighted in the release blog post: FreeCAD is now considered stable and ready for ‘real work’. One of the most important changes here is that the topological naming problem (TNP) that has plagued FreeCAD since its inception has now finally been addressed using Realthunders’ mitigation algorithm, which puts it closer to parity here with other CAD packages. The other major change is that assemblies are now supported with the assembly workbench, which uses the Ondsel solver.

Other changes include an updated user interface and other features that should make using FreeCAD easier and closer in line with industry standards. In the run-up to the 1.0 release we already addressed the nightmare that is chamfering in FreeCAD, and the many overlapping-yet-uniquely-incomplete workbenches, much of which should be far less of a confabulated nightmare in this bright new 1.0 future.

Naturally, the big zero behind the major version number also means that there will still be plenty of issues to fix and bugs to hunt down, but it’s a promising point of progress in the development of this OSS CAD package.

The End Of Ondsel And Reflecting On The Commercial Prospects For FreeCAD

Within the world of CAD there are the well-known and more niche big commercial players and there are projects like FreeCAD that seek to bring a OSS solution to the CAD world. As with other OSS projects like the GIMP, these OSS takes on commercial software do not always follow established user interactions (UX), which is where Ondsel sought to bridge the gap by giving commercial CAD users a more accessible FreeCAD experience. This effort is now however at an end, with a blog post by Ondsel core team member [Brad Collette] providing the details.

The idea of commercializing OSS is by no means novel, as this is what Red Hat and many others have done for decades now. In our article on FOSS development bounties we touched upon the different funding models for FOSS projects, with the Linux kernel enjoying strong commercial support. The trick is of course to attract such commercial support and associated funding, which is where the development on the UI/UX and feature set of the core FreeCAD code base was key. Unfortunately the business case was not strong enough to attract such commercial partners and Ondsel has been shutdown.

As also discussed on the FreeCAD forum, the Ondsel codebase will likely be at least partially merged into the FreeCAD code, ending for now the prospect of FreeCAD playing in the big leagues with the likes of AutoCAD.

Thanks to [Brian Harrington] for the tip.

FreeCAD Is Near 1.0

The open-source parametric 3D modelling software, FreeCAD, is out in a release candidate for version 1.0.  If you’ve tried FreeCAD before and found a few showstoppers, it might be a good time for you to test it out again because the two biggest of them have been solved in this latest version.

First, version 1.0 finally implements a solution to the “topological naming problem”. Imagine you want to put a hole into a surface. The program needs to know on which surface to put the hole, and so it refers to this surface by name / number. Now imagine you subdivide the surface, and both subsections get new names. Where does your hole go now?  If you want to dig into the issue, the inimitable [MangoJelly] has a great video about the topo naming problem. Practically, there were workarounds, like only adding chamfers after the main design has stabilized, but frankly it was a hassle to remember all of the tricks. This is a huge fix.

The second big fix concerns assemblies.  Older versions of FreeCAD were great for making single parts, but combining them all together inside the CAD program was always janky.  Version 1.0 combines the previous two patchwork assembly workbenches into one, and it’s altogether more pleasant to use. The constraints of how two parts move when held together with an axle just works now, and this is a big deal for multi-part models.

If you’re coming from any other parametric CAD program, most of FreeCAD will seem familiar to you, but there will also be workflow differences that will take some getting used to. In trade, what do you get? Scriptability in Python, real open source software, and all of the bells and whistles for free. Now that its two biggest pain points have been addressed,  FreeCAD has become a lot easier to love. We’re looking forward to some good V1.0 tutorials in the future, and we’ll keep you posted when we find them.