如何学习Presto:糙快猛的大数据之路(建立整体框架)

这个系列文章用"粗快猛+大模型问答+讲故事"的创新学习方法,让你轻松理解复杂知识!涵盖Hadoop、Spark、MySQL、Flink等大数据所有热门技术栈,每篇万字长文。时间紧?只看开头20%就能有收获!精彩内容太多?收藏慢慢看!点击链接开启你的大数据学习之旅https://blog.csdn.net/u012955829/category_12733281.html

稿定设计-14.png

作为一名大数据开发者,学习新技术是我们工作中不可或缺的一部分。今天,我想和大家分享一下如何高效地学习Presto这个强大的分布式SQL查询引擎。我的学习方法可以概括为"糙快猛"——不追求一步到位的完美,而是在实践中不断进步。让我们开始这段Presto学习之旅吧!

什么是Presto?

在深入学习方法之前,我们先简单了解一下Presto:
image.png

Presto是一个开源的分布式SQL查询引擎,最初由Facebook开发,用于针对各种数据源进行交互式分析查询。它的主要特点包括:

  1. 高性能:能够快速处理PB级数据。
  2. 灵活性:支持多种数据源,包括Hive、Cassandra、关系数据库等。
  3. 标准SQL:使用ANSI SQL语法,对于熟悉SQL的开发者来说学习曲线较低。

我的Presto学习故事

还记得我刚开始学习Presto的时候,内心充满了忐忑。作为一个从零基础跨行到大数据领域的开发者,面对Presto这样的分布式系统,我曾一度感到力不从心。

有一天,我偶然听到一句话:"学习就应该糙快猛,不要一下子追求完美,在不完美的状态下前行才是最高效的姿势。"这句话给了我极大的启发。我决定改变学习方式,不再纠结于完美理解每个概念,而是直接上手实践。

糙快猛学习法则

image.png

  1. 粗略了解基本概念

首先,我快速浏览了Presto的官方文档,粗略了解了它的架构和基本概念。比如:

  • Coordinator: 负责解析语句、生成执行计划和管理Worker节点
  • Worker: 负责执行任务和处理数据
  • Connector: 连接各种数据源的接口
  1. 快速搭建环境

与其花大量时间研究如何完美配置Presto集群,我选择使用Docker快速搭建一个单节点的Presto环境:

docker run -p 8080:8080 --name presto prestosql/presto

这样,我就能在几分钟内拥有一个可以实践的Presto环境。

  1. 猛练基本查询

有了环境后,我立即开始练习基本的SQL查询。例如:

-- 创建一个简单的内存表
CREATE TABLE memory.default.users (
  id BIGINT,
  name VARCHAR,
  age INTEGER
);

-- 插入一些数据
INSERT INTO memory.default.users VALUES
  (1, 'Alice', 30),
  (2, 'Bob', 25),
  (3, 'Charlie', 35);

-- 执行查询
SELECT * FROM memory.default.users WHERE age > 28;

通过这种方式,我快速熟悉了Presto的基本操作,建立了实践的信心。

迭代提升

image.png

在"糙快猛"的基础上,我逐步深入学习:

  1. 连接实际数据源: 尝试连接Hive、MySQL等实际使用的数据源。
  2. 优化查询性能: 学习使用EXPLAIN分析查询计划,优化大规模数据查询。
  3. 深入源码: 阅读关键组件的源代码,理解Presto的内部工作机制。

善用AI助手

image.png

在当前的技术环境中,我们有了更强大的学习助手——AI大模型。例如,在学习Presto时,我经常使用ChatGPT来:

  1. 解释复杂概念
  2. 生成示例代码
  3. 模拟真实场景的问题解决

这里有一个使用AI助手学习Presto的例子:

Human: 请解释Presto中的动态过滤(Dynamic Filtering)概念,并给出一个简单的使用示例。

AI: Presto的动态过滤是一种查询优化技术,用于减少在分布式连接操作中处理的数据量。它通过在运行时动态创建过滤条件,将这些条件下推到数据源,从而在早期阶段过滤掉不需要的数据。

这里是一个简单的例子:

假设我们有两张表: orders 和 lineitem

SQL查询:

SELECT o.orderkey, o.totalprice, l.quantity
FROM orders o JOIN lineitem l ON o.orderkey = l.orderkey
WHERE l.quantity > 100

在没有动态过滤的情况下,Presto会先读取整个orders表,然后与lineitem表进行连接。

使用动态过滤后,Presto会:

  1. 首先扫描lineitem表,找出quantity > 100的orderkey
  2. 将这些orderkey作为过滤条件应用到orders表的扫描中
  3. 然后只读取满足条件的orders记录

这样可以显著减少需要处理的数据量,提高查询效率。

要启用动态过滤,可以在Presto配置文件中设置:

dynamic-filtering-enabled=true

进阶学习策略

image.png

在掌握了Presto的基础知识后,是时候采取一些进阶的学习策略了。这里我想分享几个我在学习过程中发现特别有效的方法:

1. 实战项目驱动学习

没有什么比解决实际问题更能促进学习了。我建议你为自己设定一个小项目,比如:

  • 使用Presto分析你公司的日志数据
  • 构建一个跨多个数据源的报表系统

通过这样的项目,你会遇到各种实际问题,从而深入学习Presto的各种特性。

2. 参与开源社区

Presto有一个活跃的开源社区,参与其中可以极大地促进你的学习:

  • 阅读GitHub上的issues和pull requests
  • 尝试回答社区中的问题
  • 如果可能,提交一些小的bug修复或改进

这不仅能提升你的技术能力,还能建立你在大数据领域的专业网络。

3. 深入理解查询优化

Presto的查询优化是一个深奥但非常重要的话题。我建议你:

  • 学习如何读懂和分析EXPLAIN计划
  • 理解Presto的成本模型
  • 研究常见的查询优化技术,如谓词下推、动态过滤等

这里有一个分析EXPLAIN计划的简单例子:

EXPLAIN (TYPE DISTRIBUTED)
SELECT r.regionkey, n.name, count(*) as count
FROM nation n JOIN region r ON n.regionkey = r.regionkey
GROUP BY r.regionkey, n.name;

通过分析输出,你可以了解Presto如何分布式地执行这个查询,从而学习如何优化复杂查询。

实际应用案例

image.png

让我们看一个Presto在实际业务中的应用案例,这将帮助你理解Presto如何解决实际问题。

假设你是一家电商公司的大数据开发者,需要分析用户行为和销售数据。你的数据分布在多个系统中:

  • 用户行为日志存储在Hive中
  • 订单数据在MySQL数据库中
  • 产品信息在PostgreSQL中

使用Presto,你可以编写如下查询:

WITH user_behavior AS (
  SELECT user_id, count(*) as view_count
  FROM hive.logs.page_views
  WHERE date = current_date - interval '1' day
  GROUP BY user_id
),
order_info AS (
  SELECT user_id, sum(total_amount) as total_spend
  FROM mysql.sales.orders
  WHERE order_date = current_date - interval '1' day
  GROUP BY user_id
)
SELECT 
  u.user_id
评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

数据小羊

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值