ode Llama是Meta推出的一款开源大型语言模型,专注于代码生成和理解。借助Code Llama,我们可以创建自己的编程助手,支持编写代码、生成代码片段和自动化代码审查等功能。以下是详细的使用说明,指导您一步步搭建我们自己的LLM编程助手。
1. 环境准备
1.1 安装Python
版本:Python 3.10。
安装地址:Python官网(https://www.python.org/)
1.2 安装依赖库
Code Llama所需的库和工具:transformers、torch。
pip install torch transformers
1.3 安装Code Llama
git clone https://huggingface.co/meta-llama/CodeLlama-7b-hf
2.使用Code Llama模型
2.1 加载模型
第一步,加载Code Llama模型。加载Code Llama模型和对应的tokenizer代码如下:
from transformers import AutoModelForCausalLM, AutoTokenizer
# 加载模型和tokenizer
model_name = "facebook/code-llama-7b"
model = AutoModelForCausalLM.from_pretrained(model_name)
tokenizer = AutoTokenizer.from_pretrained(model_name)
2.2 生成代码
使用加载的模型生成代码片段。模型根据初始的代码片段或注释,生成后续代码,示例代码是输入fibonacci, 模型根据函数名补充生成后续代码:
# 代码或注释
input_text = input("代码或注释:")
if input_text=='':
input_text = "def fibonacci(n):"
# 进行编码
inputs = tokenizer.encode(input_text, return_tensors='pt')
# 生成代码
outputs = model.generate(inputs, max_length=100, num_return_sequences=1)
# 进行解码
generated_code = tokenizer.decode(outputs[0], skip_special_tokens=True)
# 结果输出
print(generated_code)
3. 构建交互式编程助手
我们将创建一个简单的命令行界面和Web界面,以便提高编程助手的实用性。
3.1 命令行界面
if __name__ == "__main__":
while True:
input_text = input("请输入代码或注释:")
if input_text.lower() == "exit":
break
inputs = tokenizer.encode(input_text, return_tensors='pt')
outputs = model.generate(inputs, max_length=100, num_return_sequences=1)
generated_code = tokenizer.decode(outputs[0], skip_special_tokens=True)
print("生成的代码:")
print(generated_code)
3.2 Web界面
Flask和Streamlit都是可以快速构建简单Web界面的库,我们可以利用它们快速构建一个基于Web的编程助手界面。
1)生成Html模板
创建一个简单的HTML模板index.html:
<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="UTF-8">
<title>CodeLlama编程助手</title>
</head>
<body>
<h1>CodeLlama编程助手</h1>
<form method="post">
<textarea name="input_text" rows="4" cols="50">{{ input_text }}</textarea><br><br>
<input type="submit" value="生成代码">
</form>
{% if generated_code %}
<h2>生成的代码:</h2>
<pre>{{ generated_code }}</pre>
{% endif %}
</body>
</html>
2)使用Flask搭建web服务器
from flask import Flask, request, render_template
app = Flask(__name__)
@app.route("/", methods=["GET", "POST"])
def index():
if request.method == "POST":
input_text = request.form["input_text"]
inputs = tokenizer.encode(input_text, return_tensors='pt')
outputs = model.generate(inputs, max_length=100, num_return_sequences=1)
generated_code = tokenizer.decode(outputs[0], skip_special_tokens=True)
returnrender_template("index.html", input_text=input_text, generated_code=generated_code)
return render_template("index.html")
if __name__ == "__main__":
app.run(debug=True)
4. 部署
我们可以将构建好的编程助手部署到云服务器或本地服务器上,供自己或团队使用。