【Pytorch】torch.nn.init.xavier_uniform_()

本文介绍了PyTorch中的Xavier初始化方法,即`torch.nn.init.xavier_uniform_()`,用于深度前馈神经网络的权重初始化。通过确保输入和输出的方差相同,它有助于防止参数过大或过小,促进网络训练的稳定性。文中给出了实例代码展示如何使用该方法,并解释了其在神经网络中的作用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在这里插入图片描述

简介

Hello!
非常感谢您阅读海轰的文章,倘若文中有错误的地方,欢迎您指出~
 
ଘ(੭ˊᵕˋ)੭
昵称:海轰
标签:程序猿|C++选手|学生
简介:因C语言结识编程,随后转入计算机专业,获得过国家奖学金,有幸在竞赛中拿过一些国奖、省奖…已保研
学习经验:扎实基础 + 多做笔记 + 多敲代码 + 多思考 + 学好英语!
 
唯有努力💪
 
本文仅记录自己感兴趣的内容

torch.nn.init.xavier_uniform_()

语法

torch.nn.init.xavier_uniform_(tensor, gain=1.0)

作用

根据了解训练深度前馈神经网络的难度 - Glorot, X. & Bengio, Y. (2010) 中描述的方法

使用均匀分布 用值填充输入张量

结果张量将具有从 U ( − a , a ) \mathcal{U}(-a, a) U(a,a) 采样的值,其中

在这里插入图片描述
也称为Glorot初始化

在这里插入图片描述

举例

w = torch.empty(3, 5)
print('w : \n', w)

nn.init.xavier_uniform_(w, gain=nn.init.calculate_gain('relu'))
print('w : \n', w)

在这里插入图片描述


w = torch.Tensor([[1.0,2,3],[2.0,3,4]])
print('w : \n', w)

nn.init.xavier_uniform_(w, gain=nn.init.calculate_gain('relu'))
print('w : \n', w)

在这里插入图片描述

注:w不能为1维


为什么需要Xavier 初始化?

在这里插入图片描述

所以论文提出,在每一层网络保证输入和输出的方差相同

参考:https://blog.csdn.net/dss_dssssd/article/details/83959474

个人感觉使用Xavier的作用就是预防一些参数过大或过小的情况,再保证方差一样的情况下进行缩放,便于计算

参考

  • https://pytorch.org/docs/stable/nn.init.html
  • https://blog.csdn.net/dss_dssssd/article/details/83959474

结语

文章仅作为个人学习笔记记录,记录从0到1的一个过程

希望对您有一点点帮助,如有错误欢迎小伙伴指正

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

海轰Pro

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值