【Pytorch】torch. permute()

本文介绍了PyTorch中的torch.permute()函数,用于改变张量的维度顺序。通过示例解释了如何使用该函数交换张量的维度,并提醒注意与reshape的区别。文章适合对深度学习有一定基础的读者,旨在帮助理解和掌握这一操作。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在这里插入图片描述

简介

Hello!
非常感谢您阅读海轰的文章,倘若文中有错误的地方,欢迎您指出~
 
ଘ(੭ˊᵕˋ)੭
昵称:海轰
标签:程序猿|C++选手|学生
简介:因C语言结识编程,随后转入计算机专业,获得过国家奖学金,有幸在竞赛中拿过一些国奖、省奖…已保研
学习经验:扎实基础 + 多做笔记 + 多敲代码 + 多思考 + 学好英语!
 
唯有努力💪
 
本文仅记录自己感兴趣的内容

torch. permute()

语法

torch.permute(input, dims) → Tensor

  • input (Tensor) – 输入tensor
  • dims (tuple of python:ints) – 所需的维度排序

作用

返回原始张量输入的视图,其尺寸已置换。

理解为交换维度就好了

举例

x = torch.randn(2, 3, 5)
print('x.size :' , x.size())

y = x.permute(2, 0, 1) # 交换维度 第2维放在第一位,为5维,第0维在第二位,为2....
print('y.size :', y.size())

在这里插入图片描述

注:需要注意reshape与permute的使用

参考

  • https://pytorch.org/docs/stable/generated/torch.permute.html#torch.permute

结语

文章仅作为个人学习笔记记录,记录从0到1的一个过程

希望对您有一点点帮助,如有错误欢迎小伙伴指正

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

海轰Pro

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值