毕业设计:基于深度学习的博物馆安检危险品识别系统

目录

前言

课题背景和意义

实现技术思路

一、算法理论基础

1.1 卷积神经网络

1.2 注意力机制

1.3 目标检测算法

二、 数据集

2.1 数据集

2.2 数据扩充

三、实验及结果分析

3.1 实验环境搭建

3.2 模型训练

最后


前言

    📅大四是整个大学期间最忙碌的时光,一边要忙着备考或实习为毕业后面临的就业升学做准备,一边要为毕业设计耗费大量精力。近几年各个学校要求的毕设项目越来越难,有不少课题是研究生级别难度的,对本科同学来说是充满挑战。为帮助大家顺利通过和节省时间与精力投入到更重要的就业和考试中去,学长分享优质的选题经验和毕设项目与技术思路。

🚀对毕设有任何疑问都可以问学长哦!

    选题指导:

        最新最全计算机专业毕设选题精选推荐汇总

        大家好,这里是海浪学长毕设专题,本次分享的课题是

       🎯基于深度学习的博物馆安检危险品识别系统

课题背景和意义

       随着文化遗产保护意识的增强,博物馆作为重要的文化场所,面临着越来越严格的安全管理要求。为了保护展品及观众的安全,博物馆通常会进行安检,尤其是在大型展览和活动期间。传统的安检方法依赖人工检查,效率低且易出错。基于深度学习的危险品识别系统可以利用X光影像分析技术,自动识别进入博物馆的物品是否存在危险性,从而提高安检的准确性和效率。这一研究不仅能够为博物馆提供更加智能化的安全管理方案,也能为其他公共文化场所的安检工作提供借鉴。

实现技术思路

一、算法理论基础

1.1 卷积神经网络

       卷积神经网络(CNN)是一种深度学习算法,主要用于处理多维网格结构数据,尤其适合图像识别、目标检测、自然语言处理和实例分割等任务。CNN的设计灵感源于生物视觉皮层的信息处理方式,通过模拟人类视觉系统的工作原理,使得网络能够有效地从输入图像中提取特征。其核心操作是卷积,通过卷积和池化等操作,逐层提取图像的特征信息,最终实现高效的分类和识别任务。由于CNN在特征提取方面的显著优势,使其在计算机视觉领域得到了广泛的应用。

毕业设计:基于深度学习的博物馆安检危险品识别系统

       卷积神经网络的基本结构通常由输入层、卷积层、池化层、全连接层和输出层等部分组成。在这些层中,卷积层和池化层的交替堆叠形成了深层的网络结构。卷积层负责提取局部特征,如边缘、角点和线条等低级特征,而随着网络深度的增加,后续卷积层则提取出更高层次的语义特征。这种层级结构使得CNN能够有效捕捉图像中的空间特征,并具备平移和旋转不变性,即目标在图像中的位置或角度变化不会影响特征提取的结果。

       卷积层是卷积神经网络中的核心组成部分,包含了大部分的参数。每个卷积层通常有多个卷积核(filters),每个卷积核都是一个权重矩阵,用于对输入图像进行特征提取。卷积操作通过滑动卷积核在图像上进行计算,提取出局部特征。表层的卷积层主要提取低级特征,而随着网络的深入,卷积层逐渐能够捕捉到更复杂的高层次特征。通过多层卷积的组合,CNN能够实现对图像特征的逐步抽象,从而提高模型的识别能力。

       池化层是卷积神经网络中的另一重要组成部分,其主要功能是对特征图进行降维,减小数据的维度,降低计算量,同时保留主要的特征信息。池化层通过下采样操作来缩减特征图的尺寸,常用的池化方式包括最大池化和平均池化。在多通道输入情况下,池化层会对每个通道单独操作,从而不会改变通道数。通过多次的卷积和池化操作,特征图的尺寸逐渐缩小,提取的特征也变得更加抽象,最终将这些特征输入到全连接层进行分类任务。

       全连接层是CNN中的最后一个组成部分,负责将前面提取到的特征进行整合并进行分类或回归。全连接层的每个神经元都与前一层的所有节点相连接,形成完全连接的结构。这一层的输出经过激活函数进行非线性变换,从而增加模型对非线性关系的表达能力。常用的激活函数包括sigmoid、tanh和ReLU(Rectified Linear Unit)等。通过引入激活函数,卷积层和池化层的线性操作得以打破,使得整个网络能够学习和提取更复杂的特征,提升模型的性能和准确性。

1.2 注意力机制

       SE注意力机制是一种有效的通道注意力模块,广泛应用于视觉模型中,以增强特征图的通道特征而不改变其空间大小。SE模块的核心流程包括两个步骤:挤压和激励。在挤压阶段,通过全局平均池化将输入特征图压缩为一个表示通道信息的1×1×C特征图,从而获取全局上下文信息。接着,在激励阶段,使用两个全连接层对该特征图进行处理,预测不同通道的相对重要性,并生成通道权重。最后,这些学习到的权重将通过逐通道的加权操作应用于原始特征图,增强或减弱特征图的通道响应,从而提高模型在特征提取过程中的灵敏度和性能。通过这种自适应的特征重标定,SE模块有效提升了模型对通道特性的敏感性,有助于提升视觉任务的准确性和鲁棒性。

       

       CBAM是一种高效的注意力机制,旨在通过结合通道注意力和空间注意力来增强卷积神经网络的特征表示能力。CBAM的设计灵感源于对图像特征的深入理解,认为通过对特征图的通道和空间信息进行分别关注,可以更好地提取和强化重要特征,从而提高模型在视觉任务中的性能。CBAM模块通常可以无缝集成到现有的卷积网络中,作为一个轻量级的插件,帮助模型自适应地关注最相关的特征,从而提升任务的准确性和效率。

       CBAM模块由两个主要部分组成:通道注意力模块和空间注意力模块。在通道注意力模块中,首先通过全局平均池化和全局最大池化操作对输入特征图进行压缩,获取通道的全局信息;然后通过两个全连接层生成每个通道的注意力权重,最终将这些权重与原始特征图相乘,以增强重要通道的特征。接下来,空间注意力模块对经过通道注意力加权后的特征图进行处理,采用最大池化和平均池化操作来生成空间注意力图,经过卷积层处理后,再与原始特征图相乘,以突出图像中的重要区域。通过这两个模块的交替应用,CBAM能够有效地提升特征图的表达能力,使得网络在目标检测、图像分类等任务中表现得更加优秀。

1.3 目标检测算法

        SORT算法是一种用于实时目标跟踪的高效算法,旨在通过结合目标检测和卡尔曼滤波等技术实现对多个运动目标的快速跟踪。SORT算法的核心思想是利用检测到的目标边界框和运动模型来预测目标的状态,从而在视频序列中实现对目标的持续追踪。该算法首先通过深度学习模型(如YOLO或SSD)检测每一帧中的目标,随后使用卡尔曼滤波器对目标的运动进行建模,并通过匈牙利算法解决数据关联问题,以确定当前帧中检测到的目标与之前帧中跟踪目标之间的对应关系。

       DeepSORT是一种基于SORT算法的改进版本,旨在提升多目标跟踪的精度和鲁棒性。与传统的SORT算法相比,引入了深度学习特征,通过外观特征来增强目标的辨识能力。首先通过目标检测网络检测视频帧中的目标,并提取出每个目标的边界框。随后,利用深度特征提取模型对每个检测到的目标进行外观特征提取。这一过程使得算法能够在目标外观相似、遮挡或快速移动的情况下,依然能够准确地进行目标的关联和追踪,从而显著提高了跟踪的稳定性和准确性。

       DeepSORT的跟踪过程由多个关键步骤组成,首先是对视频中的每一帧进行目标检测,获取目标的边界框和相应的置信度。接着,通过深度学习模型提取每个检测目标的外观特征,这些特征用于建立目标之间的相似性度量。在此基础上,DeepSORT结合了运动模型(卡尔曼滤波)来预测目标的位置和状态,并使用匈牙利算法进行数据关联,以确定当前帧中的目标与之前帧中跟踪目标之间的对应关系。通过这种方式,DeepSORT能够有效地整合运动信息和外观特征,实现对多个目标的实时跟踪。最终,DeepSORT不仅提高了跟踪的准确性,还能够在复杂场景中保持较高的鲁棒性。

二、 数据集

2.1 数据集

       图像采集采用自主拍摄与互联网采集相结合的方法。自主拍摄通过在博物馆的实际安检场景中,拍摄不同种类的危险品图像,以保证数据的真实性和多样性;同时,利用互联网收集公开可用的危险品图像,进一步丰富数据集的内容。使用labeling工具,标注人员对每一张图像中的危险品进行识别和标记,确保每个样本都能准确反映出目标物体的类别和位置。标注过程中,不仅要确保危险品的准确性,还要注意标注的质量,以生成高质量的数据集。

2.2 数据扩充

       在数据集划分与数据扩展的阶段,将收集到的图像数据分为训练集、验证集和测试集,以确保模型的泛化能力和性能评估的准确性。同时,通过数据扩展技术对原始图像进行增强,例如图像旋转、缩放、翻转等,进一步增加数据集的规模和多样性。这一系列步骤确保了所制作的博物馆安检危险品识别数据集不仅具有足够的质量和数量,还能够有效支持后续的深度学习模型训练与评估。

三、实验及结果分析

3.1 实验环境搭建

3.2 模型训练

       数据集的收集、标注与预处理。首先,通过自主拍摄和互联网采集,获取包含各种危险品的图像数据。然后,利用标注工具对图像进行精确标注,确保每个危险品的类型和位置都被准确记录。接着,进行数据预处理,包括图像尺寸调整、归一化和数据增强,以适应卷积神经网络(CNN)的输入要求。

import cv2
import os
import numpy as np

def preprocess_images(image_folder, target_size):
    images = []
    for filename in os.listdir(image_folder):
        img = cv2.imread(os.path.join(image_folder, filename))
        img_resized = cv2.resize(img, target_size)
        images.append(img_resized)
    return images

def augment_images(images):
    augmented_images = []
    for img in images:
        # 旋转
        angle = np.random.randint(-15, 15)
        M = cv2.getRotationMatrix2D((img.shape[1] // 2, img.shape[0] // 2), angle, 1)
        img_rotated = cv2.warpAffine(img, M, (img.shape[1], img.shape[0]))
        
        # 翻转
        img_flipped = cv2.flip(img_rotated, 1)  # 水平翻转
        
        augmented_images.append(img_rotated)
        augmented_images.append(img_flipped)
    
    return augmented_images

# 调用预处理和增强函数
processed_images = preprocess_images('data/images', (224, 224))
augmented_images = augment_images(processed_images)

       卷积神经网络(CNN)因其在图像分类和目标检测中的出色表现,成为了本项目的首选模型。同时,为了提升模型在多目标跟踪方面的能力,采用DeepSORT算法进行目标跟踪。训练过程中,利用标注好的数据集对CNN进行训练,优化其参数,并通过DeepSORT实现对检测到的目标进行跟踪。训练过程中,可以采用数据增强技术,以提升模型的鲁棒性和泛化能力。

from yolov5 import YOLOv5

# 加载预训练模型
model = YOLOv5('yolov5s.pt')  # 加载YOLOv5的轻量级模型

# 模型训练示例
model.train(data='data/dataset.yaml', epochs=50, imgsz=224)

       使用测试集对模型进行全面评估,这一阶段至关重要,以确保模型在实际应用中的有效性。评价指标主要包括多目标跟踪准确度(MOTA)、多目标跟踪精确度(MOTP)、高阶追踪精度(HOTA)、IDF1和IDSW等。这些指标能够全面反映模型在跟踪任务中的表现,涵盖了检测准确性、匹配精度及目标身份保持等多个方面。

# 模型评估示例
results = model.val(data='data/test.yaml')
print("MOTA:", results['MOTA'])
print("MOTP:", results['MOTP'])
print("HOTA:", results['HOTA'])
print("IDF1:", results['IDF1'])
print("IDSW:", results['IDSW'])

       可以包括调整超参数、增加训练数据、改进网络架构,或集成多种模型等方法。通过持续的优化和迭代,能够有效提高模型的准确性和稳定性,确保其在复杂博物馆环境中对危险品的识别和跟踪能力,最终实现高效的安检功能。

海浪学长项目示例:

最后

我是海浪学长,创作不易,欢迎点赞、关注、收藏。

毕设帮助,疑难解答,欢迎打扰!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值