毕业设计:基于图像处理技术的交通标志识别方法 人工智能

目录

前言

课题背景和意义

实现技术思路

一、算法理论基础

1.1 卷积神经网络

1.2 目标检测算法

二、 数据集

2.1 数据集

2.2 数据划分

三、实验及结果分析

3.1 实验环境搭建

3.2 模型训练

最后


前言

    📅大四是整个大学期间最忙碌的时光,一边要忙着备考或实习为毕业后面临的就业升学做准备,一边要为毕业设计耗费大量精力。近几年各个学校要求的毕设项目越来越难,有不少课题是研究生级别难度的,对本科同学来说是充满挑战。为帮助大家顺利通过和节省时间与精力投入到更重要的就业和考试中去,学长分享优质的选题经验和毕设项目与技术思路。

🚀对毕设有任何疑问都可以问学长哦!

    选题指导:

        最新最全计算机专业毕设选题精选推荐汇总

        大家好,这里是海浪学长毕设专题,本次分享的课题是

       🎯基于图像处理技术的交通标志识别方法

课题背景和意义

       交通标志在道路安全和交通管理中起着至关重要的作用。自动识别交通标志的技术可以有效提高自动驾驶系统的安全性,并为智能交通系统提供支持。随着深度学习技术的发展,交通标志识别的准确性和实时性得到了显著提升。本研究旨在构建一个高效的交通标志识别系统,以提高交通安全和智能交通系统的应用效率。

实现技术思路

一、算法理论基础

1.1 卷积神经网络

       神经网络是受人脑启发,通过模拟生物神经系统达到模仿人类思考的数学计算模型,基本单位是神经元,由大量神经元有序排列组合构成。神经元由输入、输出和计算三个部分组成,为在神经元末端增加非线性因素,解决非线性可分问题,通常会放置一个非线性函数作为激活函数。深度学习常用的激活函数有Sigmoid、Tanh、ReLU等。反向传播算法是在梯度下降法的基础上优化多层神经网络中的损失函数,使损失函数能够最小化或局部最小化的重要算法。

毕业设计:基于图像处理技术的交通标志识别方法 人工智能

       神经网络主要由正向传播和反向传播两个环节组成。正向传播阶段中,输入信息经过输入层传入,在大量隐藏层神经元节点的连接中完成权重系数的相乘运算,随后通过激活函数进行非线性变换实现激活输出,经过多个隐藏层的计算后,最终得出神经网络预测值和真实值的误差。在反向传播阶段中,利用正向传播过程中结果的误差,从输出层反向传播,计算各个神经元的权重系数误差,并依据权重误差对旧有权重系数进行相应的更新与调整。神经网络通过这两个步骤实现整个反向传播的过程,完成损失函数的优化。

毕业设计:基于图像处理技术的交通标志识别方法 人工智能

       卷积神经网络中,每个神经元均采用局部连接的方式,这种连接方式减少参与计算的参数量,显著提升模型的收敛速度。对于每一组的神经元连接可以共享权重,这项措施有助于进一步减少参与计算的参数量。通过下采样保留图像中的有效信息,使得模型的参数数量再次得到压缩。这三种策略使卷积神经网络在解决计算机视觉领域的问题时表现得更为优越。在交通标志识别任务中,卷积层、池化层和全连接层有效连接构成了卷积神经网络。卷积层是CNN构架中最重要的部分之一,承担着对输入特征图进行特征提取的任务。卷积层的设计对深度学习模型能够产生重要影响,设定适宜的卷积核尺寸、数目可以增强模型的特征提取能力以及泛化能力。卷积层架构与组合方式的不同对模型性能和收敛速度产生显著影响。

毕业设计:基于图像处理技术的交通标志识别方法 人工智能

       卷积层可以保持三维输入和输出,因此卷积层拥有更强的图像理解能力。将输入特征图各个位置与卷积核对应元素相乘,得出的结果累加放入对应输出位置,以此计算方式按固定步长滑动卷积核计算窗口,完成整个图像的卷积运算。为了保持输入输出尺寸相同,通常对输入特征图进行填充操作。通过尺寸各异的卷积核与不同的滑动窗口,卷积层得以从输入特征图中提取各类尺度和方向上的特征,实现对多个尺度上的特征提取。通常在相互连接的卷积层之间会放入一个池化层,这种处理方式不仅可以降低特征维度、扩大感受野,还能使网络更加聚焦重点特征、减少参数,避免模型过拟合。池化层的运算方式类似于卷积层,采用滑动窗口计算。常见的池化层有平均池化和最大池化。平均池化是将特征图各区域中的值求平均值,最大池化则是保留最大值。

毕业设计:基于图像处理技术的交通标志识别方法 人工智能

       在输入特征图经过多个卷积层和池化层后,通过全连接层解决卷积层和池化层输出高维度特征图导致的数据庞大的问题。然而,仅由全连接层直接输出结果,易产生特征丢失的问题。为了解决上述问题,卷积神经网络通过全连接层将卷积、池化后的数据映射至高维空间,此方法不仅聚集了局部特征,还提高了后续激活函数分类结果的准确性。对于交通标志识别任务,充分利用卷积神经网络的特性,能够有效提高识别率,准确识别不同类型的交通标志,提升自动驾驶和智能交通系统的安全性与效率。

1.2 目标检测算法

       YOLOv5在模型尺寸和参数量上更具优势,因此更适合轻量化改进。选择YOLOv5s作为基础进行改进。YOLOv5s的组成部分中C3和CONV模块参数量大,导致主干网络计算量和参数量增加。简单减少网络参数或改变结构可能破坏YOLOv5s的组织架构,可能导致模型性能指标下降。为了解决交通标志检测中模型尺寸大、推理速度慢的问题,进行模块优化,利用GhostNet思想实现C3网络和CONV模块参数量、计算量的减少,同时保持高效性能,避免因替换模块而导致YOLOv5s模型性能降低。  

毕业设计:基于图像处理技术的交通标志识别方法 人工智能

       在小目标检测过程中,YOLOv5s容易出现误检、漏检。为提升模型对小目标交通标志的定位能力,在骨干网络中嵌入CA坐标注意力,增强模型检测小目标的能力并减少模型参数。采用SIoU作为YOLOv5s的边框损失函数,提高模型收敛速度。使用TensorRT加速模型推理速度。通过上述改进实现YOLOv5s模型的轻量化。YOLOv5l和YOLOv5x结构复杂、体积大,难以部署到嵌入式设备。YOLOv5n模型尺寸过小,精度低。选择深度较小、特征图宽度较小的YOLOv5s作为基础算法进行改进。原YOLOv5s的三个组成部分:Backbone、Neck和Head,均包含参数量大、计算量高的C3和CONV模块。为减少主干网络参数量并保持较高性能,首先对C3模块和CONV模块进行轻量化优化。

       改进模型利用GhostNet网络结构思想对YOLOv5s整体架构进行轻量化,将复杂、参数较高的C3模块与GhostNet中的Ghost Bottleneck融合为更加轻量的C3Ghost模块,并将此模块替换YOLOv5s模型中的所有原Bottleneck模块。剩余Conv模块也更换为参数量更少、性能在某些条件下更佳的Ghost模块。通过上述两种替换实现网络结构的精简。在模型的大目标尺寸特征提取区引入CA注意力机制,即YOLOv5s中Backbone最后一层。GhostNet在参数量和计算量的压缩方面能够给予YOLOv5s网络模型强大支撑,同时保持良好的性能。相比其他轻量化手段,采用的方式能平衡性能与轻量,但性能的少许降低依然会出现。参数量的锐减使得模型的Backbone和Neck部分的特征提取及多尺度特征融合不能有效、高性能地完成。Backbone部分因为轻量化易出现特征图细节损失、特征图重要信息定位模糊。CA注意力的添加能够解决轻量化后模型特征提取能力下降导致的性能降低问题。

       CA坐标注意力机制将图像位置信息嵌入至通道中,将全局池分解为两个方向的一维特征编码,以缓解二维池化造成的位置信息缺失。CA注意力处理图像过程分为两个步骤:坐标信息嵌入和坐标注意力生成。损失函数在衡量预测值和真实值差异度方面起着重要作用,深刻影响模型优化速度和位置定位能力。YOLOv5s边框损失函数为CIoU,考虑预测框和真实框重叠面积、中心点距离等因素。为提高模型收敛速度,采用SIoU损失函数替换YOLOv5s中的CIoU损失函数,使真实框及预测框的损失计算能够综合考虑重叠面积、长宽比、中心点间距等多个因素。SIoU损失函数由角度损失、距离损失、形状损失、IoU损失组成,角度损失通过减少与距离相关的变量削弱距离对目标框的影响,模型尝试将预测引导到距离最近的轴,进行最小化。通过以上改进,提升交通标志识别的准确性和效率。

二、 数据集

2.1 数据集

       图像采集,主要选择自主拍摄和互联网采集两种方式。在不同的交通环境下拍摄真实的交通标志,确保数据的多样性和真实性。利用公开数据集和相关网站,获取多种类型的交通标志图像,以丰富数据集的内容和样本。使用LabelImg等标注工具对采集到的图像进行精确标注。标注过程中,需要为每个交通标志框定边界框,并分配正确的类别标签,以确保后续模型训练时能够准确识别不同类型的交通标志。

2.2 数据划分

       将数据集合理划分为训练集、验证集和测试集是至关重要的。这一过程通常遵循一定的比例,例如将70%的数据用于训练,20%用于验证,10%用于测试。训练集用于模型的训练,使能够学习到交通标志的特征;验证集用于在训练过程中评估模型的性能和调整超参数,以避免过拟合;测试集则用于最终评估模型的泛化能力和实际应用效果。通过对训练集进行图像旋转、缩放、翻转以及颜色调整等操作,可以有效地增加样本数量,从而提升模型的泛化能力。

三、实验及结果分析

3.1 实验环境搭建

3.2 模型训练

       收集与交通标志相关的图像数据,主要来源包括自主拍摄和互联网采集。图像数据需要覆盖不同的交通标志、环境条件和光照变化,以保证模型的鲁棒性。数据标注是关键环节,使用工具如LabelImg对每个图像中的交通标志进行准确标注,确保每个标志的边界框和类别标签正确无误。在标注完成后,进行数据清洗,去除模糊或不相关的图像,确保数据集质量。

import os
from PIL import Image

# 示例:读取并展示标注图像
def load_and_display_image(image_path):
    image = Image.open(image_path)
    image.show()

# 读取标注图像路径
image_folder = 'path/to/annotated/images'
for filename in os.listdir(image_folder):
    if filename.endswith('.jpg'):
        load_and_display_image(os.path.join(image_folder, filename))

       YOLOv5s因其在速度与准确性之间的良好平衡而被广泛应用。首先,配置YOLOv5s的环境,确保依赖项正确安装。接着,修改YOLOv5s的配置文件,指定数据集路径、类别数和类别名称。确保模型能够正确读取和解析数据,进而进行有效的训练。根据任务需求,可以选择适当的预训练权重,利用迁移学习加速训练过程。使用YOLOv5提供的训练脚本,指定训练集和验证集路径,配置超参数,如学习率、批量大小和训练轮次。训练过程中,可以监控损失值和准确率,以评估模型的训练效果。适时保存最佳模型权重,并进行早停策略以避免过拟合。训练完成后,模型会学习到交通标志的特征,为后续的测试和评估打下基础。

# 安装YOLOv5依赖
!pip install -r requirements.txt

# 配置数据集路径和类别
data_yaml = """
train: 'data/train/images'
val: 'data/val/images'

nc: 10  # 类别数
names: ['stop_sign', 'yield_sign', 'speed_limit', 'no_entry', 'one_way', ...]  # 类别名称
"""

# 保存配置文件
with open('data.yaml', 'w') as f:
    f.write(data_yaml)

       训练完成后,需要对模型进行评估,以验证其在测试集上的表现。使用YOLOv5的评估脚本,计算准确率、召回率和F1分数等指标。这些指标可以帮助判断模型的实际应用能力。如果评估结果不理想,通过调整学习率、增加数据增强方法或延长训练时间来优化模型。根据评估反馈,针对性地进行模型调优,确保模型在各种交通场景下的有效性。

import json

# 假设评估结果保存在一个文本文件result.txt中
with open('result.txt', 'r') as f:
    results = f.read()

# 解析评估结果
results_dict = {}
for line in results.splitlines():
    if 'precision' in line:
        parts = line.split()
        results_dict['precision'] = float(parts[1])
    elif 'recall' in line:
        parts = line.split()
        results_dict['recall'] = float(parts[1])
    elif 'mAP@0.5' in line:
        parts = line.split()
        results_dict['mAP_0.5'] = float(parts[1])
    elif 'mAP@0.5:0.95' in line:
        parts = line.split()
        results_dict['mAP_0.5_0.95'] = float(parts[1])

# 输出结果字典
print(json.dumps(results_dict, indent=4))

海浪学长项目示例:

最后

我是海浪学长,创作不易,欢迎点赞、关注、收藏。

毕设帮助,疑难解答,欢迎打扰!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值