1.动态规划理论基础
1.1题目分类大纲
1.2什么是动态规划?
- 动态规划,英文:Dynamic Programming,简称DP,如果某一问题有很多重叠子问题,使用动态规划是最有效的。
- 所以动态规划中每一个状态一定是由上一个状态推导出来的,这一点就区分于贪心,贪心没有状态推导,而是从局部直接选最优的,
1.3背包问题
-
例如:有N件物品和一个最多能背重量为W 的背包。第i件物品的重量是weight[i],得到的价值是value[i] 。每件物品只能用一次,求解将哪些物品装入背包里物品价值总和最大。
-
动态规划中dp[j]是由dp[j-weight[i]]推导出来的,然后取max(dp[j], dp[j - weight[i]] + value[i])。
但如果是贪心呢,每次拿物品选一个最大的或者最小的就完事了,和上一个状态没有关系。
所以贪心解决不了动态规划的问题。
1.4解题步骤
将动态规划问题拆解为如下五部曲:
- 确定dp数组(dp table)以及下标的含义
- 确定递推公式
- dp数组如何初始化
- 确定遍历顺序
- 举例推导dp数组
1.5动态规划应该如何debug?
-
找问题的最好方式就是把dp数组打印出来,看看究竟是不是按照自己思路推导的!
-
做动规的题目,写代码之前一定要把状态转移在dp数组的上具体情况模拟一遍,心中有数,确定最后推出的是想要的结果
-
若出现代码错误,可以先思考以下三个问题:
- 这道题目我举例推导状态转移公式了么?
- 我打印dp数组的日志了么?
- 打印出来了dp数组和我想的一样么?
2.斐波那契数
2.1题目
斐波那契数 (通常用 F(n)
表示)形成的序列称为 斐波那契数列 。该数列由 0
和 1
开始,后面的每一项数字都是前面两项数字的和。也就是:
F(0) = 0,F(1) = 1
F(n) = F(n - 1) + F(n - 2),其中 n > 1
给定 n
,请计算 F(n)
。
- 示例一:
输入:n = 2
输出:1
解释:F(2) = F(1) + F(0) = 1 + 0 = 1
- 示例二:
输入:n = 3
输出:2
解释:F(3) = F(2) + F(1) = 1 + 1 = 2
- 示例三:
输入:n = 4
输出:3
解释:F(4) = F(3) + F(2) = 2 + 1 = 3
2.2解法:动态规划
2.2.1动态规划思路
动规五部曲:
(1)确定dp数组以及下标的含义
dp[i]的定义为:第i个数的斐波那契数值是dp[i]
(2)确定递推公式
题目已经把递推公式直接给我们了:状态转移方程 dp[i] = dp[i - 1] + dp[i - 2];
(3)dp数组初始化
题目中把如何初始化也直接给我们了,如下:
dp[0] = 0;
dp[1] = 1;
(4)确定遍历顺序
从递归公式dp[i] = dp[i - 1] + dp[i - 2];中可以看出,dp[i]是依赖 dp[i - 1] 和 dp[i - 2],那么遍历的顺序一定是从前到后遍历的
(5)举例推导dp数组
按照这个递推公式dp[i] = dp[i - 1] + dp[i - 2],我们来推导一下,当N为10的时候,dp数组应该是如下的数列:
0 1 1 2 3 5 8 13 21 34 55
如果代码写出来,发现结果不对,就把dp数组打印出来看看和我们推导的数列是不是一致的。
2.2.2代码实现
public int fib(int n) {
if(n<=1){