【算法刷题 | 动态规划01】5.01(动态规划理论基础、斐波那契数、爬楼梯、使用最小花费爬楼梯)

在这里插入图片描述

1.动态规划理论基础

1.1题目分类大纲

img

1.2什么是动态规划?

  • 动态规划,英文:Dynamic Programming,简称DP,如果某一问题有很多重叠子问题,使用动态规划是最有效的。
  • 所以动态规划中每一个状态一定是由上一个状态推导出来的这一点就区分于贪心,贪心没有状态推导,而是从局部直接选最优的,

1.3背包问题

  • 例如:有N件物品和一个最多能背重量为W 的背包。第i件物品的重量是weight[i],得到的价值是value[i] 。每件物品只能用一次,求解将哪些物品装入背包里物品价值总和最大。

  • 动态规划中dp[j]是由dp[j-weight[i]]推导出来的,然后取max(dp[j], dp[j - weight[i]] + value[i])。

但如果是贪心呢,每次拿物品选一个最大的或者最小的就完事了,和上一个状态没有关系

所以贪心解决不了动态规划的问题。

1.4解题步骤

将动态规划问题拆解为如下五部曲:

  1. 确定dp数组(dp table)以及下标的含义
  2. 确定递推公式
  3. dp数组如何初始化
  4. 确定遍历顺序
  5. 举例推导dp数组

1.5动态规划应该如何debug?

  • 找问题的最好方式就是把dp数组打印出来,看看究竟是不是按照自己思路推导的!

  • 做动规的题目,写代码之前一定要把状态转移在dp数组的上具体情况模拟一遍,心中有数,确定最后推出的是想要的结果

  • 若出现代码错误,可以先思考以下三个问题:

    • 这道题目我举例推导状态转移公式了么?
    • 我打印dp数组的日志了么?
    • 打印出来了dp数组和我想的一样么?

2.斐波那契数

2.1题目

斐波那契数 (通常用 F(n) 表示)形成的序列称为 斐波那契数列 。该数列由 01 开始,后面的每一项数字都是前面两项数字的和。也就是:

F(0) = 0,F(1) = 1
F(n) = F(n - 1) + F(n - 2),其中 n > 1

给定 n ,请计算 F(n)

  • 示例一:
输入:n = 2
输出:1
解释:F(2) = F(1) + F(0) = 1 + 0 = 1
  • 示例二:
输入:n = 3
输出:2
解释:F(3) = F(2) + F(1) = 1 + 1 = 2
  • 示例三:
输入:n = 4
输出:3
解释:F(4) = F(3) + F(2) = 2 + 1 = 3

2.2解法:动态规划

2.2.1动态规划思路

动规五部曲:

(1)确定dp数组以及下标的含义

dp[i]的定义为:第i个数的斐波那契数值是dp[i]

(2)确定递推公式

题目已经把递推公式直接给我们了:状态转移方程 dp[i] = dp[i - 1] + dp[i - 2];

(3)dp数组初始化

题目中把如何初始化也直接给我们了,如下:

dp[0] = 0;
dp[1] = 1;
(4)确定遍历顺序

从递归公式dp[i] = dp[i - 1] + dp[i - 2];中可以看出,dp[i]是依赖 dp[i - 1] 和 dp[i - 2],那么遍历的顺序一定是从前到后遍历的

(5)举例推导dp数组

按照这个递推公式dp[i] = dp[i - 1] + dp[i - 2],我们来推导一下,当N为10的时候,dp数组应该是如下的数列:

0 1 1 2 3 5 8 13 21 34 55

如果代码写出来,发现结果不对,就把dp数组打印出来看看和我们推导的数列是不是一致的。

2.2.2代码实现

	public int fib(int n) {
   
   
        if(n<=1){
   
   
            
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

来自梦里的一条鱼

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值