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Abstract

Convolutional Neural Networks (CNNs) are currently adopted to solve an ever greater number of problems, rang-
ing from speech recognition to image classification and segmentation. The large amount of processing required
by CNNss calls for dedicated and tailored hardware support methods. Moreover, CNN workloads have a streaming
nature, well suited to reconfigurable hardware architectures such as FPGAs.

The amount and diversity of research on the subject of CNN FPGA acceleration within the last 3 years demon-
strates the tremendous industrial and academic interest. This paper presents a state-of-the-art of CNN inference
accelerators over FPGAs. The computational workloads, their parallelism and the involved memory accesses are
analyzed. At the level of neurons, optimizations of the convolutional and fully connected layers are explained and
the performances of the different methods compared. At the network level, approximate computing and datapath
optimization methods are covered and state-of-the-art approaches compared. The methods and tools investigated
in this survey represent the recent trends in FPGA CNN inference accelerators and will fuel the future advances
on efficient hardware deep learning.



1 Introduction

The exponential growth of big data during the last decade motivates for innovative methods to extract high seman-
tic information from raw sensor data such as videos, images and speech sequences. Among the proposed methods,
Convolutional Neural Networks (CNNs) [[1]] have become the de-facto standard by delivering near-human accu-
racy in many applications related to machine vision (e.g classification [2]], detection [3], segmentation [4]) and
speech recognition [5].

This performance comes at the price of a large computational cost as CNNs require up to 38 GOP/s to classify
a single frame [[6]]. As a result, dedicated hardware is required to accelerate their execution. Graphics Process-
ing Units (GPUs), are the most widely used platform to implement CNNs as they offer the best performance in
terms of pure computational throughput, reaching up 11 TFLOP/s [[7]. Nevertheless, in terms of power consump-
tion, Field-Programmable Gate Array (FPGA) solutions are known to be more energy efficient (vs GPUs). As a
result, numerous FPGA-Based CNN accelerators have been proposed, targeting both High Performance Comput-
ing (HPC) data-centers [[8] and embedded applications [9].

While GPU implementations have demonstrated state-of-the-art computational performance, CNN acceler-
ation is shortly moving towards FPGAs for two reasons. First, recent improvements in FPGA technology put
FPGA performance within striking distance to GPUs with a reported performance of 9.2 TFLOP/s for the lat-
ter [10]. Second, recent trends in CNN development increase the sparsity of CNNs and use extreme compact
data types. These trends favorize FPGA devices which are designed to handle irregular parallelism and custom
data types. As a result, next generation CNN accelerators are expected to deliver up to x5.4 better computational
throughput than GPUs. [7].

As an inflection point in the development of CNN accelerators might be near, we conduct a survey on FPGA-
Based CNN accelerators. While a similar survey can be found in [11]], we focus in this paper on the recent tech-
niques that were not covered in the previous works. Moreover, a recent review of efficient processing techniques
for deep learning is proposed in [12]], but focuses on Application Specific Integrated Circuits (ASIC) accelerators
for CNNss while our work is mainly related to FPGA-based implementations.

The rest of the paper is organized as follows, section [2|recalls the main features of CNNs, focusing on com-
putations and workload issues. Section [3| studies the computational transforms exploited to accelerate CNNs on
FPGAs. Section[4reviews the contributions that attempt to optimize the data-path of FPGA-Based CNN accelera-
tors. Section [5|shows how approximate computing is a key in the acceleration of CNNs on FPGAs and overviews
the main contributions implementing these techniques. Finally, section 6 concludes the paper.

2 Background on CNNs

This section overviews the main features of CNNs and focuses on the computations and parallelism patterns
involved during their inference.

2.1 General Overview:

CNNs are feed-forward, deep, sparsely connected neural networks that implement weight sharing. A typical
CNN structure consists of a pipeline of layers. Each layer inputs a set of data, known as a Feature Map (FM), and
produces a new set of FMs with higher-level semantics.

2.2 Inference vs Training:

As typical Machine Learning (ML) algorithms, CNNs are deployed in two phases. First, the training stage works
on a known set of annotated data samples to create a model with a modeling power (i.e. which semantics ex-
trapolates to natural data outside the training set). This phase implements the back-propagation algorithm [[13]



which iteratively updates CNN parameters such as convolution weights to improve the predictive power of the
model. CNN Models can also be fine-tuned. When fine-tuning a model, weights of a previously-trained network
are used to initialize the parameters of a new training. These weights are then adjusted for a new constrain, such
as a different dataset or a reduced precision.

The second phase, known as inference, uses the learned model to classify new data samples (i.e inputs that
were not previously seen by the model). In a typical setup, CNNs are trained/fine-tuned only once, on large
GPU/FPGA clusters. By contrast, the inference is implemented each time a new data sample has to be classi-
fied. As a consequence, the literature mostly focuses on accelerating the inference phase. As a result, this paper
overviews the main methods employed to accelerate the inferenceﬂ Moreover, since most of the CNN accelerators
benchmark their performance on models trained for image classification, we focus on this paper on this applica-
tion. Nonetheless, the methods studied in this survey can be employed to accelerate CNNs for other applications
such object detection, image segmentation and speech recognition.

2.3 Inference of CNNs

CNN inference refers to the feed-forward propagation of B input images across L layers. This section details the
computations involved in the major types of these layers. A common practice is to manipulate layer parameters
and FMs using tensors. The tensors and variables used in this work are listed in table

Table 1: Tensors Involved in the inference of a given layer £ with their dimensions

Input FMs BXCXHXW B Batch size (Number of input frames)
Output FMs | BX N XV xU || W/H/C | Width / Height / Depth of Input FMs
Learned Filters | NXCX Jx K || U/V/N | Width / Height / Depth of Output FMs

Learned biases N K/J Horizontal / Vertical Kernel size

| 0] ~| >

2.3.1 Convolution layers:

A convolution layer (conv) carries out the feature extraction process by applying —as illustrated in figure (1 a set
of 3D-convolution filters " to a set of B input volumes X“°™". Each input volume has a depth C and can be a
color image (in the case of the first conv layer), or an output generated by previous layers in the network. Applying
a 3D-filter to 3D-input results in a 2D Feature Map (FM) and, each conv layer outputs a set of N two-dimensional
features maps. In some CNN models, a learned offset f°°"V —called a bias— is added to the 3D-conv results, but
this practice is discarded in recent models [6]. The computations involved in feed-forward propagation of conv
layers are detailed in equation

V {b,n,u,v} € [1,B] x [1,N] x [1,V] x [, U]

C J K
YO b,nv,ul = B ]+ >0 D XM [b,e, 0+ ju+ kO™ [n,c, j, k] (1)

IThe computational transforms discussed in sections [3| and approximate computing techniques detailed in section [5| can both be
employed during the training and the inference.
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Figure 1: Feed forward propagation in conv, act and pool layers (Batch size B=1, bias § omitted)
2.3.2 Activation Layers:

Each conv layer of a CNN is usually followed by an activation layer that applies a non-linear function to all the
values of FMs. Early CNNs were trained with TanH or Sigmoid functions but recent models employ the Rectified
Linear Unit (ReLU) function that grants faster training times and less computational complexity, as highlighted
in [14].

V{b,n,u,v} € [1,B] X [1,N] X [1, V] x [1,U]

Y*b, n, h,w] = act (X atlp n, h, w]) | act := TanH, Sigmoid, ReLU ... (2)

2.3.3 Pooling layers:

The convolutional and activation parts of a CNN are directly inspired by the cells of visual cortex in neuro-
science [[15]]. This is also the case of pooling layers, which are periodically inserted in-between successive conv
layers. As shown in equation [3] pooling sub-samples each channel of the input FMs by selecting the average, or,
more commonly, the maximum of a given neighborhood K. As a results, the dimensionality of a FMs is reduced,
as illustrated in figure

V {b,n,u,v} € [1,B] x [1,N] x [1, V] x [1, U]

YPUb, n,v,ul = max (Xp°°1[b, n,o+p,u+ q]) (3)
p-qe[L:K]

2.3.4 Fully Connected Layers:

When deployed for classification tasks, the CNNs pipeline is often terminated by Fully Connected (FC) layers.
These layers can be seen as conv layers with no weight sharing (i.e W = K and H = J). Moreover, in a same way
as conv layers, a non-linear function is applied to the outputs of FC Layers.

V{b,n} € [1,B] X[1,N]

C H W
Y[b,n] = f¥[nl + " "> X[, c,h,w).6%[n,c,h, w] (4)



2.3.5 Batch-Normalization Layers:

Batch-Normalization is introduced in [16] to speed up training by linearly shifting and scaling the distribution
of a given batch of inputs B to have zero mean and unit variance. These layers find also there interest when
implementing Binary Neural Network (BNN) (cf section[5.1.3) by reducing the quantization error compared to an
arbitrary input distribution, as highlighted in [17]. Equation 5| details the processing of batch norm layers, where
u and o are statistic collected during the training, « , € and y parameters are training hyper-parameters.

V{b,n,u,v} € [1,B] X [1,N] X [1,V] x[1,U]
XBN[b, n,u,v] - U
Vo2 + €

YBN[b, n,o,ul =

yt+ao

2.4 Workload of a CNNs inference

Table 2: Popular CNN models with their computational workload. Accuracy measured on single-crops of Ima-
geNet test-set.

Model AlexNet [14] | GoogleNet [18] | VGG16 [6] | VGG19 [6] | ResNet50 [19] | ResNet101 [19] | ResNet-152 [19]
Top1 err 429 % 313 % 28.1% 273 % 24.7% 23.6% % 23.0%
Top5 err 19.80 % 10.07 % 9.90 % 9.00 % 7.8 % 71 % 6.7 %
conv layers 5 57 13 16 53 104 155
conv workload (MACs) 666 M 1.58 G 153G 195G 3.86 G 7.57 G 113G
conv parameters 233 M 597 M 147 M 20M 235M 424 M 58 M
Activation layers ReLU
pool layers 3 14 5 5 2 2 2
FC layers 3 1 3 3 1 1 1
FC workload (MACs) 58.6 M 1.02M 124 M 124 M 2.05M 2.05M 2.05M
FC parametrs 58.6 M 1.02M 124 M 124 M 2.05M 2.05M 2.05M
Total workload (MACs) 724 M 158 G 155G 19.6 G 3.86 G 757G 113G
Total parameters 61 M 6.99 M 138 M 144 M 255 M 444 M 60 M

The accuracy of CNN models have been increasing since their breakthrough in 2012 [14]. However, this
accuracy comes at the price of a high computational cost. The main challenge that faces CNN developers is to
improve classification accuracy while maintaining a tolerable computational workload. As shown in table 2] this
challenge was successfully addressed by Inception [18] and ResNet models [19], with their use of bottleneck 1 x 1
convolutions that reduce both model size and computations while increasing depth and accuracy.

2.4.1 Computational Workload:

The computational workload of a CNN inference is the result of an intensive use of the Multiply Accumulate
(MAC) operation. Most of these MACs occur on the convolutional parts of the network, as shown in tab|2| As a
consequence, conv layers are responsible, in a typical implementation, of more than 90% of execution time during
the inference [20]. Conversely to computations, and as shown in tab [2| most of the CNN weights are included on
the FC-layers. Due to this unbalanced computation to memory ratio, CNNs accelerators follow different strategies
when implementing the convolutional and fully connected parts of inference.



2.4.2 Parallelism in CNNs:

Because of the high number of required computations, inferring CNNs with real-time constraints is a challenge,
especially on low-energy embedded devices. A solution to this challenge is to take advantage of the extensive
concurrency exhibited by CNNs. These sources can be formalized as:

« Batch Parallelism: CNN implementations can simultaneously classify multiple frames grouped as a batch
B in order to reuses the filters in each layer and minimize the external memory accesses. As a result, the
inference benefits from a significant acceleration when implementing batch processing.

+ Inter-layer Parallelism: CNNs have a feed-forward hierarchical structure consisting of a succession of
data-dependent layers. These layers can be executed in a pipelined fashion by launching layer () before
ending the execution of layer (£ — 1).

Moreover, the computation of each conv layer, described in eq|[1] exhibits four sources of concurrency that are
detailed above.

« Inter-FM Parallelism: Each output FM plane of a conv layer can be processed separately from the others.
This means that Py elements of YV can be computed in parallel (0 < Py < N).

« Intra-FM Parallelism: Multiple pixels of a single output FM plane can be processed concurrently by
evaluating Py X Ty Values of Y°™[n] (0 < Py X Py < V x U)

« Inter-convolution Parallelism: 3D-convolutions occurring in conv layers can be expressed as a sum
of 2D convolutions as shown in equation [6] These 2D convolutions can be evaluated simultaneously by
computing concurrently Pc elements of eq[6(0 < Pc < C).

+ Intra-convolution Parallelism: The 2D-convolutions involved in the processing of conv layers can be
implemented in a pipelined fashion as in [21]]. In this case P; X Px multiplications are implemented con-
currently (0 < Py X Px < J X K).

V {b,n} € [1,B] x [1,N]

C
Y™ [n] = bln] + Y conVZD(XCO“V[c], @[, c]) ©6)

c=1

2.4.3 Memory Accesses in CNNs:

The CNN inference shows large vectorization opportunities that are exploited by allocating multiple computa-
tional resources to accelerate the processing. However, this method may be inefficient if no caching strategy is
implemented.

In fact, memory bandwidth is often the bottleneck when processing CNNs. For the FC parts, execution can
be memory-bounded because of the high number of weights that these layers contain, and consequently, the
high number of memory reads engendered. For the conv parts, the high number of MAC operations results in
a high amount of memory accesses because each MAC requires at least 2 memory reads and 1 memory write
to be performecﬂ If all these accesses are towards external memory (for instance, Dynamic Random Access

2This is the best case scenario of a fully pipelined MAC where intermediate results don’t need to be loaded.



Memory (DRAM)), throughput and energy consumption will be highly impacted since a DRAM access engenders
significantly more of latency and energy consumption than the computation it self [[22]]

The number of these DRAM accesses, and thus latency and energy consumption, can be reduced by imple-
menting a memory caching hierarchy using on-chip memories. As discussed in section[4] Hardware accelerators
for CNNs usually employ two levels of caches. The first level is implemented by means of large on-chip buffers
while the second level involves local register files implemented at the nearest of the computational capabilities.
The latency and energy consumption that result from memory access toward these 2 cache levels is several order
of magnitude less then external memory access, as pointed-out in [12]].

2.4.4 Hardware, libraries and frameworks:

In order to catch the parallelism of CNNs, dedicated hardware accelerators are developed. Most of them are based
on GPU, which that are known to perform well on regular parallelism patterns thanks to a Single Instruction on
Multiple Data (SIMD) and Single Instruction on Multiple Threads (SIMD) execution models, a dense collection
of floating-point computing elements that peaks at 12 TFLOPs, and high capacity/bandwidth on/off-chip memo-
ries [23]]. To support these hardware accelerators, specialized libraries for deep learning are developed to provide
the necessary programming abstraction, such as CudNN on Nvidia GPUs [24] and DeepCL on heterogeneous
hardware through OpenCL standard[25]. Built-upon these libraries, dedicated frameworks for deep learning are
proposed to improve productivity of conceiving, training and deploying CNNs, such as Caffe[26]] and Tensor-
Flow [27].

Beside GPU implementations, numerous FPGA accelerators for CNNs have been proposed. FPGAs are fine-
grain programmable devices that can catch the CNN parallelism patterns with no memory bottleneck, tanks to

1. A High density of hard-wired Digital Signal Processing (DSP) blocs that are able to achieve up to 20 (8
TFLOPs) TMACs [10].

2. A collection of In-situ on-chip memories, located next to DSPs, that can be exploited to significantly reduce
the number of external memory accesses.

When porting a CNN to an FPGA device, the problem boils down to finding an efficient mapping between the
computational model of the former and the execution model supported by the latter. In the the following sections,
the main strategies explored by the literature to address this mapping problem are reviewed. In particular, we
show that current FPGA-based accelerators for CNNs rely on one (or a combination) of three main optimizations
to efficiently infer CNNss.

[FPGA Acceleration of CNNs

Datapath Optimization} [CNN model Optimization Hardware Generation

| \ \

[Algorithmic Optimization

GEMM Winograd || FFT || SDF / DPN || DSE/Roofline || misc. Sparsity] [Quantization Stochastic [HLS Based || DSL Based || RTL
ZOZ8I7IZ9) || [BoIBL] || [(32IB3]|| [34IG5) [39140) [51156] 2
[36137138] [281[41) [5711581[591[60]
[42]143] . . . .
Pruning || SVD || Linear Binary OpenCL || Vivado HLS
[E4145) || [ || [EelE7) [50I1) 28] B9152]
[481[91/49] || [52I53154) [Bol61) [34)

le2]

Figure 2: Main Approaches to Accelerate CNN inference on FPGAs



3 Algorithmic Optimizations for FPGA-Based CNN Acceleration

In order to accelerate the execution of conv and FC layers, computational transforms are employed on the FMs
and kernels in order to vectorize the implementations and reduce the number of arithmetic operations occurring
during inference. These computational transforms are mainly deployed in CPUs and GPU and are implemented
by means of variety of software libraries such OpenBlas CPUs and cuBLAS for GPUs. Beside this, various imple-
mentations make use of such transforms to map CNNs on FPGAs.

3.1 GEMM Transformation

In Central Processing Units (CPUs) and GPUs, a common way to process CNNs is to map conv and FC layers
as General Matrix Multiplications (GEMMs). The OpenCL standard generalizes this approach to FPGAs-based
implementations [[63] 64]].

For FC layers, in which the processing boils down to a matrix-vector multiplication problem, the GEMM-
based implementations find its interest when processing a batch of FMs. In this case, the batch is concatenated
onto a CHW X B matrix, as shown in fig[3al

As mentioned in section [2.4.1] most of the weights of CNNs are employed in the FC parts. Instead of loading
these weights multiple times to classify multiple inputs, feature maps of FC layers are batched in a way that
FC weights are loaded only one time per batch. This vectorization is employed in [65] [66, [30] to increase the
computational throughput in FC layers while maintaining a constant memory bandwidth utilization. Moreover,
the efficiency of this method increases as the sparsity of O grows (cf. sec .

‘,’/ FC Weights efc \‘,‘ ‘,/ Input FMs xfe N "/ conv Weights econv\\\y‘ ;'/Input FMs Xcor\n;\‘
A g K b |
e SR o ok
A : e ae N
\ < N S \\ B S \\\ N //‘ \\\\ /,/
‘ ‘ ‘ ‘ Padding/Replication
Output Output
N X = N EMS N X - N FMs
yfe Y~conv
CHW B CIK v
CHW
CJK

TV
(2) (b)

Figure 3: GEMM Based processing of: a- FC layers, b- conv layers.

3D Convolutions can also be mapped as GEMMs using, for instance, the computational transform introduced
n [29]. Suda et al. [28] and more recently, Zhang et al. [61] leverage on this GEMMs transcription of 3D con-
volution to derive OpenCL-based FPGA Accelerators for CNNs. In these works, a transformation flattens all the
filters of a given conv layer onto an N x CKJ matrix © and re-arranges input FMs onto a CKJ X UV matrix X. The
output FMs, Y, is the result of the multiplication of the two former matrices, as illustrated in Fig The mapping
of conv layers as GEMMs can also be performed using a relaxed form of the Toeplitz matrix [67]. However, the
downside for using GEMMs for the layers is the introduction of redundant data in the input FMs. This redun-
dancy, as pointed-out in [12], can lead to either inefficiency in storage or complex memory access patterns. As a
result, other strategies to map convolutions are considered.

~.conv

?conv -0 x Xconv (7)



3.2 Winograd Transform

Winograd minimal filter algorithm, introduced in [[68]], is a computational transform that can be applied to convo-
lutions when the stride is 1. Winograd convolutions are particularly efficient when processing small convolutions
(K < 3), as demonstrated in [69]. In this works, authors report an acceleration up to x7.28 when compared to
classical GEMM based implementation of convolutions when executing VGG16 on a TitanX GPU.

In Winograd filtering, data is processed by blocs referred as tiles, as following:

1. An input FM tile x of size (u X u) is pre-processed: x = ATxA
2. In a same way, 0 the filter tile of size (k X k) is transformed into 0:0 = BTxB

3. Winograd filtering algorithm, denoted F(u X u,k X k), outputs a tile y of size (u X u) that is computed
according to equation [g]

y:CT[éQJZ]C (8)

where A, B, C are transformation matrices defined in the Winograd algorithm [68]] and © denotes the Hadamard
product or Element-Wise Matrix Multiplication (EWMM).

While a standard filtering requires u?xk? multiplications, Winograd algorithm F(uxu, kxk) requires (u+k—1)>?
multiplications [68]]. In the case of tiles of a size u = 2 and kernels of size k = 3, this corresponds to an arithmetic
complexity reduction of x2.25 [69]. In return, the number of additions is increased.

Beside this complexity reduction, implementing Winograd filtering in FPGA-Based CNN accelerators has two
advantages. First, transformation matrices A, B, C can be generated off-line once u and k are determined. As a
result, these transforms become multiplications with the constants that can be implemented by means of Lookup
Table (LUT) and shift registers, as proposed in [70].

Second, Winograd filtering can employ the loop optimization techniques discussed in section4.2|to vectorize
the implementation. On one hand, the computational throughput is increased when unrolling the computation
of the EWMMs parts on an array of DSP blocs. On the other hand, memory bandwidth is optimized using loop
tiling to determine the size FM tiles and filter buffers.

First utilization of Winograd filtering in FPGA-Based CNN accelerators is proposed in [31] and delivers a com-
putational throughput of 46 GOPs when executing AlexNet convolution layers. This performance is significantly
by a factor of x42 in [30] when optimizing the datapath to support Winograd convolutions (by employing loop
unrolling and tiling strategies), and storing the intermediate FM in on-chip buffers (cf sec[4). The same method-
ology is employed in [[70] to derive a CNN accelerator on a Xilinx ZCU102 device. This accelerator delivers a
throughput of 2.94 TOPs on VGG convolutional layers, which corresponds to half of the performance of a TitanX
device, with x5.7 less power consumption [23]

3.3 Fast Fourier Transform

Fast Fourier Transofrm (FFT) is a well known algorithm to transform the 2D convolutions into EWMM in the
frequency domain, as shown in equation [9

conv2D(X[c], O[n, c]) = IFFT(FFT(X[C]) © FFT(®[n, c])) 9)

Using FFT to process 2D convolutions reduces the arithmetic complexity to O(WZ2log,(W)), which is exploited
to derive FPGA-based accelerators to train CNNs [33]]. When compared to standard filtering and Winograd al-
gorithm, FFT finds its interest in convolutions with large kernel size (K > 5), as demonstrated in [69, [63]]. The
computational complexity of FFT convolutions can be further reduced to O(Wlog,(K)) using the Overlap-and-
Add Method [[71] that can be applied when the signal size is much larger than the filter size, which is the case in

3Implementation in the TitanX GPU employs Winograd algorithm and 32 bits floating point arithmetic



Table 3: FPGA-Based CNN accelerators employing computational transform to accelerate conv layers

‘ ‘ Network Workload ‘ ‘ ‘ Freq ‘ Through ‘ Power ‘ LUT ‘ ‘ Memory ‘
Network Bitwidth | Desc. Device P
| | Comp. (GOP) | Param. (M) | | | | MHz) | (GOPs) | (W) | (K) | | B) |
| | BT] | AlexNet-C | 13 | 23 | Float32 | OpenCL | Virtex7 VX690T | 200 | 46 | | 505 | 3683 | 563 |
| | [30] | AlexNet-C | 13 | 23 | Floatl6 | OpenCL | Arrial0 GX1150 | 303 | 1382 | 443 | 246 | 1576 | 497 |
| VioeRd T agiec | sor | 147 | \ \ \ | 3045 | N \
70 Fixed 16 | HLS Zynq ZU9EG 200 236 | 600 2520 328
| | | AlexNet-C | 13 | 2.3 | | | | 855 | | | | |
| - | - | AlexNet-C | 1.3 | 2.3 | . | | ' | | 8 | | | | |
oat 32 Stratix5 QPI 200 3.2 201 | 224 4.0
| | | VGG19-C | 30.6 | 147 | | | | | 123 | | | | |
28] | AlexNet-C 13 2.3 Fixed 16 | OpenCL | Stratix5 GXA7 | 194 66 339 | 228 | 256 37.9
| | 28 | | | \ | OpenCL | \ \ \ | 228 | 256 | |
| | | | | | | | KintexKU060 | 200 | 365 | 250 | 150 | 1058 | 141 |
[66] = VGG16-F 31.1 138.0 Fixed 16 | HLS
GEMM irtex X .
| | | | | | | | Virtex7 VX960T | 150 | 354 | 260 | 351 |2833| 225 |
| | | | | | Fixed 16 | OpenCL | | 370 | 866 | 417 | 437 |1320| 250 |
[61] = VGG16-F 31.1 1380 ~——————— Arrial0 GX1150
| | | | | | Float32 | OpenCL | | 385 | 1790 | 375 | | 2756 | 290 |

conv layers (W >> K). Works in [32] exploit this method to implement frequency domain acceleration for conv
layers on FPGA, which results in a computational throughput of 83 GOPs for AlexNet.

4 Data-path Optimizations for FPGA-Based CNN Accelerators

As highlighted in sec the execution of CNNs exhibit numerous sources of parallelism. However, because of
the resource limitation of FPGAs devices, it is impossible to fully exploit all the parallelism patterns, especially
with the sheer volume of operations involved in deep topologies. In other words, the execution of recent CNN
models can not fully be "Unrolled", sometimes, not even for a single conv layer. To address this problem, the main
approach that state-of-the-art implementations advocates, is to map a limited number of Processing Elements
(PEs) on the FPGA. These PEs are reused by temporally iterating data through them.

»
CPU External Memory e
Off-chip
memory
a‘ DMA ‘ g’ R Previous partial sum
, _ f L | YS! X — o
N g : xconv 1 eCOI’IV YCOI'IV % e%:cF»
© [ |buffer[|buffer||buffer| —’
. | DMA = l l l T e — \ yeonv
PE R Nel Ne [=] € B . .
"’ [re o " - © 5 (ko Pl (O—fad]—
. (2]
: : : P —{| PE||PE|...|PE| £
s 3 3 3 o ngnv
v L oy 95

(a) Static Systolic Array (b) Generic SIMD Accelerator (c) Processing Element

Figure 4: Generic Data-paths of FPGA-based CNN accelerators

4.1 Systolic Arrays

Early FPGA-based accelerators for CNNs implemented systolic arrays to accelerate the 2D filtering in convolu-
tions layers [72,73,[74,[75,76]]. As illustrated in figure[4a] systolic arrays employ a static collection of PEs, typically



Table 4: Loop Optimization Parameters P; and T;

Parallelism | Intra-layer | Inter-FM | Intra-FM | Inter-Convolution | Intra-Convolution
LOOp L L L N L % L U LC L 7 L K
Unroll factor Py Py Py | Py Pc Py Px
Tilil’lg Factor T; TN Ty | Ty Tc T] Tk

arranged in a 2-dimensional grid, that operates under the control of a CPU. This static collection of PEs is agnos-
tic to the CNN model configuration. It can only support convolutions with a kernel size K that is smaller than a
given maximum size K, (i.e support only convolutions such K < K,,, where , for instance, K,,, = 7 in [73] and
K, = 10 in [[76]). Moreover, when performing convolutions with a smaller kernel size then K,,, (K << K},), only
a small part of computing capabilities is used. For instance in [[76]], processing 3 X 3 convolutions uses only 9% of
DSP Blocs. Finally, these systolic arrays do not implement data caching and requires to fetch inputs from off-chip
memory. As a result, their performance is bounded by memory bandwidth of the device.

4.2 SIMD Accelerators and Loop Optimization

Due to inefficiency of static systolic arrays, flexible SIMD accelerators for CNNs on FPGAs were proposed. The
general computation flow in these accelerators —illustrated in Figldca- is to fetch FMs and weights from DRAM
to on-chip buffers. These data are then streamed into the PEs. At the end of the PE computation, results are
transferred back to on-chip buffers and, if necessary, to the external memory in order to be fetched in their turn
to process the next layers. Each PE -as depicted in Fig. [dc}b- is configurable and has its own computational
capabilities by means of DSP blocs, and its own data caching capabilities by means of on-chip registers.

With this paradigm, the problem of CNN mapping boils down to finding the optimal architectural configu-
ration of PEs (number of PEs, number of DSP blocs per PE, size of data caches), as well as the optimal temporal
scheduling of data that maximizes the computational throughput 7.

For convolution layers, in which the processing is described in listing[6a finding the optimal PE configuration
can be seen as a loop optimization problem [39] 9, 28] [[77, 65} [40, [78], 36} [79] [80} [43]]. This problem is addressed
by applying loop optimization techniques such loop unrolling, loop tiling or loop interchange to the 7 nested loops
of listing [6a In this case, setting the unroll and tiling factors (resp. P; and T;) determines the number of PEs, the
computational resources and on-chip memory allocated to each PE in addition to the size of on-chip buffer and
the amount of DRAM accesses.

4.2.1 Loop Unrolling:

Unrolling a loop L; with an unrolling factor P; (P; < i,i € {L,V,U,N,C,J,K}) accelerates its execution at
the expense of resource utilization. Each of the parallelism patterns listed in section can be implemented
by unrolling one of the loops of listing [6a} as summarized in table 4 For configuration given in figure [4c the
unrolling factor Py determines the number of PEs. On the other hand, unrolling factors Pc, Pk, P; determine the
number of multipliers and adders, as well as the size of registers contained in each PE.

4.2.2 Loop Tiling:

In general, the capacity of on-chip memory in current FPGAs is not large enough to store all the weights and
intermediate FMs of all CNN layersAs a consequence, FPGA based accelerators resort to external DRAMs to store
this data. As mentioned in section|2.4.3l DRAM accesses are costly in terms of energy and latency, and data caches
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Figure 5: Loop tiling and unrolling

must be implemented by means of on-chip buffers and local registers. The challenge is to configure the data-path
in a way that every data transferred from DRAM is reused as much as possible.

For conv layers, this challenge can be addressed by tiling the nested loops of listing[6a] Loop tiling divides
the FMs and weights of each layer into multiple blocks that can fit into the on-chip buffers. For the configuration
given in figure[dd| sizes of buffers containing input FM, weights and output FM are determined by the tiling factors
detailed in table[4] according to equation [10]

Mconv = TcTHTW + TNTcT]TK + TNTvTU (10)
// L1: Layer for (int n=0;n<N;n+=Tn){
for (int 1=0;1<L,1++){ for (int v=0;v<V,v+=Tv){
// Lb : Batch for (int u=0;u<U,u+=Tu){
for (int b=0;b<B, 1++){ for (int c=0;n<C;c+=Tc){

// Ln: Y Depth

for (int n=0;n<N;n++){
// Lv: Y Columns

for (int v=0;v<V,v++){

// DRAM: Load in on—chip buffers the tiles:
// X[1,c:c+Tc,v:v+Tv,u:u+Tul

// Theta [1,n:n+Tn,c:c+Tc,j,k]

// Process on—chip tiles

// Lu: Y Raws for (int tn=0;tn<Tn;tn++){
for (int u=0;u<U,u++){ for (int tv=0;tv<Tv,tv++){
// Lc: X Depth for (int tu=0;tu<Tu,tu++){
for (int c=0;n<C;c++){ for (int tc=0;tn<Tc;tc++){
// Lj: Theta Columns for (int j=0;j<J,j++){
for (int j=0;j<J,j++){ for (int k=0; k<K, k++){

// Lk: Theta Raws
for (int k=0;k<K, k++){

Y[b,l,n,v,u] += X[b,1,c,v+j,u+k] =*

Theta[l,n,c,j, K]
133133}

Y[1l,tn,tv,tu] += X[1,tc,tv+j,tu+k] =*

Theta[l,tn,tc,j,kl;

j3333s;
// DRAM: Store output tile

33}

(@)

(b)

Figure 6: Loop Tiling in conv layers: a-Before tiling, b-After tiling
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4.2.3 Design Space Exploration:

In order to find the optimal unrolling and tiling factors, a large exploration of the design space is needed. In a
general way, an analytical model is built. Inputs of this model are loop factors P;, T; and outputs are a theoretical
prediction of the allocated resources, the computational throughout and the memory bandwidth used. This model
is parametrized by the available resources of a given FPGA platform and the workload of the CNN.

Given this model, the objective is to find the design parameters that minimize the memory access while
maximizing the resource utilization. To address this optimization problem, a brute force exploration is performed,
such in [39] 28] [77,[65] [40} [78]]. This exploration is usually driven by the Roofline method [82] in order to select the
feasible design solutions that matches with the maximum computational throughput and the maximum memory
bandwidth a given platform can deliver [39] /40| 41]]. The design space can also be explored by means of heuristic
search algorithms, as proposed for instance in [35]].

4.2.4 FPGA Implementations:

Employing loop optimizations to derive FPGA-based CNN accelerator was first investigated in [39]. In this work,
Zhang et al. report a computational throughput of 61.62 GOPs in the execution of AlexNet convolutional layers
by unrolling loops Lc and Ly. This accelerator was built using HLS tools and rely on 32 floating point arith-
metic. Works in [78] follow the same unrolling scheme and implement the FC part of the inference. Moreover,
design [78] features 16 bits fixed point arithmetic and RTL conception, resulting in a x2.2 improvement in terms
of computational throughput. Finally, the same unrolling and tiling scheme are employed in recent works [65]
were authors report a x13,4 improvement over their original works in [39]], thanks to a deeply pipelined FPGA
cluster of four Virtex7-XV960t devices and a 16 bits fixed point arithmetic.

In all these implementations, loops L; and Lk are not unrolled because J and K are usually small, especially in
recent topologies (cf Table[2). Works of Motamedi et al. [40] study the impact of unrolling these loops in AlexNet,
where the first convolution layers use 11X 11 and 5 5 filters. Expanding loop unrolling and tiling to loops L; and
Lk results in a x1.36 improvement in computational throughput vs [39] on the same VX485T device when using
32 floating point arithmetic. In a same way, implementations in [28] (9, [36] tile and unroll loops Ly, L¢c, Ly, Lk
and demonstrate higher acceleration on AlexNet and VGG when using fixed point arithmetic. Nevertheless,
and as pointed out in [80], unrolling loops L; and L is ineffective for recent CNN models that employ small
convolution kernels. In addition, Tiling loops L; and Lk requires PEs to be configured differently for different
layers, increasing thus the control complexity.

The values of U, V, N can be very large in CNN models. Consequently, unrolling and tiling loops Ly, Ly, Ly
can be efficient only for devices with high computational capabilities (i.e DSP Blocs). This is demonstrated in
works of Rahman et al. [77] that report an improvement of xX1.22 over [39] when enlarging the design space
exploration to loops Ly, Ly, Ly

In order to keep data in on-chip buffer after the execution of a given layer,[79] investigates fused-layer CNN
Accelerators by tiling across layer L. As a result, authors report a reduction of 95% of DRAM accesses at the cost
of 362KB of extra on-chip memory.

In all these approaches, loops Ly, Lc, Ly, Lk are unrolled in a same way they are tilled (i.e T; = P;). By
contrast, the works of Ma et al. [80} [83] fully explore all the design variables searching for optimal loop unroll
and tiling factors. More particularly, authors demonstrate that the input FMs and weights are optimally reused
when unrolling only computations within a single input FM (i.e when Pc = P; = Py = 1). Tiling factors are set
in way that all the data required to compute an element of Y are fully buffered (i.e Tc = C,Tx = K, Tj = J). The
remaining design parameters are derived after a brute force design exploration. The same authors leverage on
these loop optimizations to build an RTL compiler for CNNs in [84]. To the best of our knowledge, this accelerator
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Table 5: FPGA-based CNN accelerators implementing loop optimization

‘ ‘ Network Workload ‘ ‘ ‘ ‘ Freq ‘ Through ‘ Power ‘ LUT ‘ ‘ Memory ‘
Network Bitwidth Desc. Device DSP

| | Comp. (GOP) | Param. (M) | | | | MHz) | (GOPs) | (W) | (K) | | MB) |
| B3] | AlexNet-C | 13 | 23 | Float32 | HLS | Virtex7 VX485T | 100 | 6162 | 1861 | 186 | 2240 | 184 |
| Bl | VGG16SVD-F | 30.8 | 502 | Fixed16 | HDL | ZynqZ7045 | 150 | 13697 | 963 | 183 | 780 | 175 |
| | AlexNet-C | 13 | 23 | | | | \ 187.24 | | 138 | 635 | 182 |
| 28] | AlexNet-F | 14 | 610 | Fixed16 | OpenCL | StratixsGSDS | 120 | 7164 | | 272 | 752 | 301 |

33.93
| | VGGieF | 31.1 | 1380 | | | | | 179 | | 524 | 1963 | 514 |
| [77] | AlexNet-C | 13 | 23 | Float32 | HLS | Virtex7 VX485T | 100 | 7516 | | 28 | 2695 | 195 |
| | AlexNet-F | 14 | 610 | | | | | 8256 | 126.00 | | 14400 | |
‘ [l65] ‘ VGGI6F ‘ 11 ‘ 1380 ‘ Fixed 16 ‘ HLS ‘ Virtex7 VX690T ‘ 150 ‘ 12803 ‘ 160,00 ‘ ‘ 21600 ‘ ‘
| | NNF | 2.2 | 61.0 | | | | | 1145 | 1950 | 224 | 256 | 466 |
78] Fixed 16 HDL Stratix5 GXA7 100
| | AlexNet-F | 15 | 7.6 | | | | | 1341 | 1910 | 242 | 256 | 310 |
| B8] | AlexNet-F | 14 | 61.0 | Fixed 16 | | Virtex7 VX690T | 156 | 56594 | 3020 | 274 | 2144 | 348 |
| 791 | AlexNet-C | 13 | 23 | Float32z | HLS | Virtex7 VX690T | 100 | 6162 | | 273 | 2401 | 202 |
| 80] | VGG16F | 31.1 | 1380 | Fixed16 | HDL | Arrial0 GX1150 | 150 | 64525 | 5000 | 322 | 1518 | 380 |
| | AlexNet-F | 14 | 610 | | | | 2396 | 3604 | | 700 | 1290 | 472 |
| @3 | VGGF | 311 | 1380 | Fixed16 | OpenCL | Arrial0 GT1150 | 221.65 | 4605 | | 708 | 1340 | 493 |
| |  VGGF | 311 | 1380 | | | | 231.85 | 11713 | | 626 | 1500 | 334 |
‘[42J‘ oot | 13 | 23 | Fed 16 \ \ Cyclone5 SEM | 100 | 1211 | | 22 | 28 | o2 |
| | | 13 | 23 | \ \ Virtex7 VX485T | 100 | 445 | | | 2800 | |
| | NiN | 20.2 | 7.6 | | | | \ 282.67 | | 453 | 256 | 302 |
| | VGGI&F | 311 | 1380 | \ | Stratixs GXA7 | 150 | 35224 | | 424 | 256 | 440 |
‘[84J‘ ResNet-50 | 7.8 | 255 | Fived 16 \ \ | | 25075 | | 347 | 256 | 393 |
| | NN 202 B \ \ | | 587.63 | | 320 | 1518 | 304 |
| | VGGI&F | 311 | 1380 | \ | Arria10 GX1150 | 200 | 72015 | | 263 | 1518 | 445 |
| | ResNet-50 | 7.8 | 255 | | | | | 61913 | | 437 | 1518 | 385 |
| | AlexNet-F | 15 | 7.6 | 1 | | T\ | 4456 | 2480 | 207 | 2872 | 37 |
Float 32 Vi VX69 1

| 3 | VGG16SVD-F | 30.8 | 50.2 | oat3 | | irtex7 VX690 | 00 | 4734 | 2560 | 224 | 2950 | 47 |

outperforms all the previous implementations that are based on loop optimization in terms of computational
throughput.

4.3 Dataflow MoC For CNNs

Feed-forward propagation is by nature a streaming based applications in which the execution is purely data-
driven. In fact, the CNN layout is in contrast with Von Neumann execution models and a CNN implementation can
easily be memory-bounded if it has to fetch every instruction from memory. This motivated multiple approaches
to investigate the applicability of the data-flow Model of Computation (MoC) to accelerate CNNs on FPGAs.

The foundations of the data-flow MoC were formalized by [86] in order to create an architecture where
multiple fragments of instructions can process simultaneously streams of data. Programs respecting dataflow
semantics are described as Data-flow Process Networks (DPNs). Each node of this network corresponds to a
fundamental processing unit called an actor and each edge corresponds to a communication FIFO channel. Actors
exchange abstract data —~known as tokens— through these FIFOs. Each actor follows a purely data-driven execution
model wherein the firing (execution) is triggered only by the availability of input operands. This is typically the
case in CNNs, where the execution of each layer is only triggered by the availability of input FM.

Applying the data-flow MoC to accelerate CNN implementations on FPGAs is investigated in [87]]. In this
work, authors demonstrate the efficiency of the proposed lightweight data-flow methodology [88] by mapping
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Table 6: FPGA-Based CNN accelerators employing the data-flow MoC

‘ ‘ Network Workload ‘ ‘ ‘ ‘ Freq ‘ Through ‘ Power ‘ LUT ‘ ‘ Memory ‘
Network Bitwidth | Desc. Device SP

\ | Comp. (GOP) | Param. (M) | \ \ | MHz) | (GOPs) | (W) | (K) | | (KB) |
| @11 | CarType-C | 0.16 | 003 | Float32 | HDL | ZynqZ7045 | 100 | 047 | 023 | 68 | 24 | 14400 |
\ | LeNets-C | 0.04 \ 0.03 \ \ \ \ | 048 | | 14 | 4 | 427 |

134] Fixed16 | HLS | ZynqZ7020 , 100 0.75

\ | SignRecog-C | 4.03 | 004 | \ \ \ | 603 | | 26 | 144 | 382 |
| B0] | VGG16F | 31.10 | 13800 | Fixed16 | HLS | ZynqZ7045 | 125 | 12312 | | 219 | 900 | 24000 |
\ | SVHN-C | 0.02 | 008 | Fixed5 | DL ‘c | GX‘ | 17073 | | 40 | o | 109 |
\ L38] | LeNets-C | 0.04 \ 0.03 | Fixed3 | \ yelones \ 6396 | 243846 | |8 | o | oz |

conv layers with variable clock-domains in a Zynq ZC706 device.

A special case of data-flow, referred as Static Data-Flow (SDF) [89], is a paradigm in which the number of
tokens produced and consumed by each actor can be specified a priori, as it is the case in the CNN execution.
SDF model is employed in [34,[90] to optimize the mapping of CNN graphs on FPGAs. In this works, the CNN
graph is modeled as a topology matrix that contains the the number of incoming streams, the size of tokens and
the consumption rates of each actor. Instead of exploring the design space of unrolling and tiling parameters (cf.
sec[4.2), authors explore the design space of the topology matrix components. These optimal components are
used to derive the configuration of the PE and buffers that either minimizes the computation latency or energy
consumption. Moreover, and in contrast with classical implementations where data is streamed in and out of
layers using off-chip data transfers, authors exploit partial dynamic reconfiguration of FPGAs to process different
layers.

Finally, works in [38] optimize the direct hardware mapping of CNN graphs. In this approach, each actor of
the DPN is physically mapped on the device with its own specific instance, while each edge is mapped as a signal.
As all the computations are unrolled, applicability of this method can rapidly be limited by the resource of the
device or the size of the CNN, preventing this approach from implementing deep models.

Figure 7: An example of a graph representation of a convolution layer (C = 3, N = 5)

5 Approximate Computing of CNN Models

Beside the computational transforms and data-path optimizations, the CNN execution can be accelerated when
employing approximate computing which is known to perform efficiently on FPGAs [92]].
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In this approach, a minimal amount of the CNN accuracy is traded to improve the computational throughput
and energy efficiency of the execution. Two main strategies are employed. This first implements approximate
arithmetic to process the CNN layers with a reduced precision while the second aims to reduce the number
of operations occurring in CNN models without critically affecting the modeling performance. Both of these
methods can be integrated in the learning phase to jointly maximize the accuracy and minimize the workload of
a given CNN model.

5.1 Approximate Arithmetic for CNNs

Several studies have demonstrated that the precision of both operations and operands in CNNﬁ can be reduced
without critically affecting their predictive performance. This reduction can be achieved by quantizing either
or both of the CNN inputs, weights and/or FMs using a fixed point numerical representation and implementing
approximate multipliers and adders.

5.1.1 Fixed point arithmetic:

In a general way, CNN models are deployed in CPUs and GPUs using the same numerical precision they were
trained with, relying on simple-precision floating point representation. This format employs 32 bits, arranged
according to the IEEE754 standard. In FPGAs, implementations such [39,[79,[77] employ this data representation.

Nonetheless, several studies in [93][46][94]] demonstrate that inference of CNNs can be achieved with a reduced
precision of operands. In addition, works in [48][95,[96] 97]] demonstrate the applicability of fixed-point arithmetic
to train CNNs. In both cases, FMs and/or weights are quantized using a fixed point representation scheme. In
simplest version of this format, numbers are encoded with the same bit-width (bw) that is set according to the
numerical range and the desired precision. More particularly, all the operands share the same exponent (i.e scale
factor) that can be seen as as the position of the radix point. In this paper, we refer to this representation as Static
Fixed Point (SFP).

When compared to floating point, SFP computing with compact bit-width is known to be more efficient in
terms of hardware utilization and power consumption. This is especially true in FPGAs [98]], where a single DSP
block can either implement one 32bits floating point multiplication, two 1819 bits multiplications, or three 18X 19
multiplications [10].

This motivated early implementations to employ SFP in building FPGA-Based CNN accelerators, such in [[72]
73[74], or in [[751[76]], where authors use a 16 bits (Q8.8) format to represent FMs and weights. To prevent overflow,
the bit-width is expanded when computing the weighted-sums of convolutions and inner-products. If bx bits are
used to quantize the FM and bg bits are used to quantize the weights, an accumulator of size b, is used, according
to equation[11} which corresponds to accumulators of 48 bits in [[73] [74].

bace = by + bg + max (10g2 (CgK?) ) (11)
<
5.1.2 Dynamic Fixed Point for CNNss:

In deep topologies, it can be observed that distinct parts of a network can have a significantly different numerical
range of data. More particularly, the FMs of deep layers tend to have larger numerical range than first FMs, while
the weights are generally much smaller than the FMs. As a consequence, the bit-width is expanded to keep the
same precision while preventing overflow, as in[[74]. As a result, and as pointed-out [48], SFP with its unique
shared fixed exponent, is ill-suited to deep learning.

4and more generally in neural networks
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To address this problem, works in [48] [49]] advocates the use of Dynamic Fixed Point (DFP) [99] In DFP,
different scaling factors are used to process different parts of the network. More particularly, weights, weighted
sums and outputs of each layer are assigned distinct scale factors. The optimal scale factors and bit-widths (i.e the
ones that deliver the best trade-off between accuracy loss and computational load) for each layer can be derived
after a brute force exploration using dedicated frameworks that supports DFP such [49] [100] for Caffe and [96]
for TensorFlow. In addition, these tools can fine-tune the CNN model to improve the accuracy of the quantized
network.

The FPGA-Based CNN Accelerator proposed in [28] is build upon this quantification scheme and employs
different bit-widths to represent the FM, the convolution kernels and the FC weights with resp. 16,8,10 bits.
Without fine-tuning, authors report a drop of 1% in classification accuracy of AlexNet. For the same network,
works of [78] employs 10 bits for FMs, 8 bits for both conv and FC weights and report an accuracy drop of 0.4%.
In a same way, Qiu et al. employ DFP to quantize the VGG with 8,8 and 4 bits while reporting 2% of accuracy
drop. In these accelerators, dynamic quantization is supported by means of data shift modules [9]]. Finally, the
accelerator in [42] rely on the Ristretto framework [[49] to derive an AlexNet model wherein the data is quantized
in 16 bits with distinct scale factors per layerﬂ

5.1.3 Extreme quantification with Binary and pseudo-Binary Nets:

Beside fixed point quantification, training and inferring CNNs with extremely compact data representations, is a
research area that is gaining interest. In particular, works in BinaryConnect [50] investigate the applicability of
binary weights (i.e weights with either a value of —6 or 0) to train CNNs, which lowers both bandwidth require-
ments and accuracy on ImageNet by respectively 3200% and 19.2% (vs AlexNet Float32 Model). The same authors
go further by implementing BNNs [17], with a 1bit representation for both FM and weights. In these networks,
negative data is represented as 0 while positive values are represented as 1. As a consequence, the computation
of MACs boils down to an XNOR operation followed by a pop-count, as shown in figure Moreover, Batch
normalization is performed before applying of the sign activation function in order to reduce the information
lost during binarization, as shown in figure [8al However, a classification accuracy drop of 29.8% is observed on
ImageNet when using BNNs. In an attempt to lower the accuracy drop of BNNs, Rastegari et al. proposed XNOR-
Nets [51]] which use different scale factors for binary weights (i.e —6; or +6,). Moreover, Pseudo-Binary Networks,
such DoReFa-Net [101]] and QNN [102] reduce the accuracy drop to 6.5% by employing a slightly expanded bit-
width (2 bits) to represent the intermediate FMs. Finally, in Trained Ternary Quantization (TTQ) [103]], weights
are constrained to three values —0;,0, —6, (2 bits), but FM are represented in a 32bits float scheme. As a conse-
quence, the efficiency gain of TTQ is not as high as in BNNs.But in turn, TTQ achieves comparable accuracy on
ImageNet, within 0.7% of full-precision.

In FPGAs, BNNs benefit from a significant acceleration as the processing of "binary" convolutions can be
mapped on XNOR gates followed by a pop count operation, as depicted in figure[8b| Furthermore, and as suggested
in [[7], pop count operation can be implemented using lookup tables in a way that convolutions are processed only
with logical elements. The DSPs blocs are can thus be used to process the batch norm calculation (eq[5 which can
be formulated as a linear transform reduces in order reduce the number of operations. This approach is followed
in the implementation of [104] to derive an FPGA-Based accelerator for BNNs that achieves 207.8 GOP/s while
only consuming 4.7 W and 3 DSP Blocs to classify the Cifar10 dataset. For the same task, works in [52] [105]
use a smaller network conﬁguratiorﬂ and reaches a throughput of 2.4 TOP/s when using a larger Zynq 72045
Device with 11W Power consumption. For ImageNet classification, Binary Net implementation of [106] delivers
an overall throughput 1.9 TOP/s on a Stratix V GSD device. In all these works, the first layer is not binerized

> An other approach to address this problem is to use half-precision 16 bits floating point, as used in [30]
¢ Since the same PEs are reused to process different layers, the same bit-width is used with a variable radix point for each layer
"The network topology used in this work involves 90% less computations and achieves 7% less classification accuracy on Cifar10
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Figure 8: Binary Neural Networks: a-Processing Pipeline, b-Binary Convolutions

to achieve better classification accuracy. As pointed-out in [106]], the performance in this layer can be improved
when using a higher amount of DSP blocs. Finally, an accelerator for ternary neural networks is proposed in [[107]]
and achieves a peak performance of 8.36 TMAC/s at 13W power consumption for Cifar10 Classification.

5.1.4 Stochastic Computing;:

Stochastic Computing (SC) is a low-cost design technique that has been successfully applied in numerous image
processing algorithms [108].

In SC, numbers are represented as a random sequence of s bits. In the basic "unipolar" format, the number
of ones appearing in the sequence s determines the value of x, i.e the numerical value of a given number x is
s1/s, where x is the number of ones appearing in s. The advantage of stochastic arithmetic is that operations
are performed with an ultra-small circuitry. For instance, a single AND gate can map a multiplication. Works
in [60, 59, 58] demonstrate the feasibility of stochastic arithmetic to accelerate CNNs. More particularly, Ardakani
et al. propose an FPGA accelerator to classify the MNIST dataset, where multiplications are processed only using
AND gates and activation functions (TanH) are implemented in the stochastic domain using FSMs. Such an
implementation delivers a computational throughput of 15.44 TOP/s with a misclassification rate of 2.40% on
MNIST. However, one the of weakness of SC are long bit-stream. In fact, to represent an n bits number, a bit-stream
s of 2" is required. As a result, stochastic arithmetic suffers from long run-times to perform operations. Moreover,
the generation of this bit-streams resorts to dedicated circuitry known as Stochastic Number Generators (SNGs),
which add more overhead to the implementation. As a result, SC-based accelerators implement only shallow
neural networks with a limited depth.

5.2 Reduce Computations in CNNs

In addition to approximate arithmetic, several studies attempt to the reduce the number of operations involved in
CNNs. For FPGA-Based implementation, two main strategies are investigated: weight pruning, which increases
the sparsity of the model, and low-rank approximation of filters, which reduces the number of multiplications
occurring in the inference.

5.2.1 Weight Pruning:

As highlighted in [109], CNNs as over-parametrized networks and a large amount of the weights can be removed
—or pruned— without critically affecting the classification accuracy. In its simplest form, pruning is performed
according to the magnitude such as the lowest values of the weights are truncated to zero [110]]. In a more recent
approach, weights removal is driven by energy consumption of a given node of the graph, which is 1.74x more
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Table 7: FPGA-Based CNN accelerators employing Approximate arithmetic

‘ b ‘ Network Workload ‘ Bitwidth ‘ A ‘ Devi ‘ Freq ‘ Through. ‘ Power ‘ LUT ‘ b ‘ Memory ‘

| P | Comp. (GOP) | Param. (M) | In/Out | EMs | w-C | wEC | | D | Eg) | Gops) | w) | @) || By |
| FP32 | [61) | ImageNet | 30.8 | 1380 | 32 | 32 | 32 | 32 |901|AmialoGX1150 | 370 | 866 | 417 | 437 | 1320 | 250 |
| FP16 | [30] | ImageNet | 1.4 | 610 | 16 16 | 16 | 16 |79.2 | Arrialo GX1150 | 303 | 1382 | 443 | 246 | 1576 | 497 |
| | [80] | ImageNet | 30.8 | 1380 | 16 | 16 | 8 | 8 |881|ArmialoGX1150 | 150 | 645 | | 322 | 1518 | 380 |
| DFP | [84] | ImageNet | 30.8 | 1380 | 16 | 16 | 16 | 16 | | Arria10 GX1150 | 200 | 720 | | 132 | 1518 | 445 |
| | [61] | ImageNet | 30.8 | 1380 | 16 | 16 | 16 | 16 | | Arria10 GX1150 | 370 | 1790 | | 437 | 2756 | 290 |
| | [[04] | Cifar10 | 1.2 | 134 | 20 | 2 | 1t | 1 |87.7] ZynqZ7020 | 143 | 208 | 47 | 47 | 3 | |
| | 2] | Cifar10 | 03 | 5.6 | 20006 | 2 | 1 | 1 |801| Zynqz7045 | 200 | 2465 | 117 | 83 | | 71 |
\ BNN \ \ MNIST \ 0.0 \ 9.6 \ 8 \ 2 \ 1 \ 1 \ 98.2 \ \ \ 5905 \ \ 364 \ 20 \ \
| | [[06] | Cifar10 | 1.2 | 134 | 8 | 8 | 1 | 1 |83 Swatix5GSD8 | 150 | 9396 | 262 | 438 | 20 | 442 |
| \ | ImageNet | 23 | 871 | 8 |32 ] 1a| 1 |668]| \ | 1964 | | 462 | 384 | |
| | | Cifario | 1.2 | 134 | | | | | 89.4 | | | 10962 | 136 | 275 | | 394 |
| INN | [[07] | SVEN | 03 | 5.6 | 8 | 2z | 2 | 2 |976|Xilinx7VXe90T | 250 | 86124 | 7.1 | 155 | | 122 |
| | | GTSRB | 03 | 56 | | | | | 99.0 | | | 86124 | 66 | 155 | | 122 |

efficient than magnitude-based approaches [111]. In both approaches, pruning is followed by a fine-tuning of
the remaining weights in order to improve the classification accuracy. This is for instance the case in [112]],
where pruning removes respectively 53% and 85% of the weights in AlexNet conv and FC layers for less then 0.5%
accuracy loss.

5.2.2 Low Rank Approximation:

Another way to reduce the computations occurring in CNNs is to maximize the number of of separable filters
in CNN models. A 2D-separable filter 6°P has a unitary rank (i.e rank (8°P) = 1), and can be expressed as
two successive 1D filters 0jx; and 0;xx. When expanding this to 3D filters, a separable 3D convolution requires
C + J + K multiplications while a standard 3D convolution requires C X J X K multiplications.

Nonetheless, only a small proportion of the filters in CNN Models are separable. To increase this proportion,
a first approach is to force the convolution kernels to be separable by penalizing high rank filters when training
the network [113]. Alternatively, and after the training, the weights © of a given layer can be approximated into
a small set of r low rank filters that can be implemented as a succession of fully separable filters. In this case,
r X (C + J + K) multiplications are required to process a single 3D-convolution.

For FC layers, in which the processing boils down to a vector-matrix product, low rank apximation can be

~ fi
achieved by employing, for instance, the SVD decomposition of the weight matrix © ¢ (cf. sec|3.1). Finally, and in
a same way to pruning, low rank approximation of weights is followed by a fine-tuning in order counterbalance
the classification accuracy drop.

5.2.3 FPGA Implementations:

In FPGA Implementations, low rank approximation is applied on FC layer to significantly reduce the number of
weight, such as in [9], where authors derive a VGG16-SVD model that achieves 87.96% accuracy on ImageNet
with 63% less parameters.

Sparsity in pruned CNNs can be exploited in FPGA implementations by fully unrolling the processing of a
given layer, and skipping (i.e not mapping) the multiplications with zero weights. This approach is investigated
in [38]], but can be infeasible when the resource of a given device doesn’t match with computational requirements
of a given layer. Instead, sparsity and pruning can be exploited when processing conv and fc layers as GEMM
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Table 8: FPGA-Based CNN accelerators employing pruning and low rank approximation

‘ ‘ Network Workload ‘ Removed ‘ ‘ Acc ‘ ‘ Freq ‘ Through. ‘ Power ‘ LUT ‘ ‘ Memory ‘

Dataset Bitwidth Device
| | Comp. (GOP) | Param. (M) | Param. (%) | | ) | | MHz) | (GOPs) | (W) | (K) | | (MB) |
| SVD | [ | ImageNet | 30.5 | 1380 | 63.6 | 16Fixed | 87.96 | Zynq7Zo4s | 150 | 137 | 96 | 183 | 780 | 175 |
\P | BB | Ccifarto | 0.3 | 1329 | 89.3 | 8Fixed | 9153 |Kintex7K325T | 100 | 8621 | 70 | 17 | 145 | 151 |
| runmg\ [7] | ImageNet | 14 | 61.0 | 85.0 | 32Float | 7970 | Stratix10 | 500 | 12000 | 141.2 | | | |

(cf In this case, the challenge is to determine the optimal format of matrices that maximizes the chance
to detect and skip zero computations, such compressed sparse column (CRC) or compressed sparse row (CSR)
formats{ﬂ Based on previous studied related to sparse GEMM implementation on FPGAs in [114], Sze et al.[12]
advocates the use of the CRC to process CNNs because this format provides a lower memory bandwidth when
the output matrix is smaller then the input, which is typically the case in CNNs where N < CJK in Fig[3b]

However, this efficiency of CRC format is only valid for extremely sparse matrices (typically with < 1% of
non zeros), while pruned CNN matrices are not that sparse (typically, < 4 — 80% of non zeros). Therefore, works
in [[7]] use a zero skip scheduler, which is an on-chip data manager thanks to which zero elements are identified
and not scheduled onto the MAC processing. As a result, the number of cycles required to compute the sparse
GEMM is reduced, which corresponds to a 4x speedup in cycle count for and 85% sparse AlexNet layers. Finally,
authors report to a projected throughput of 12 TOP/s for pruned CNNs in the next Intel Stratix10 FPGAs, which
outperforms and the computational throughput of state-of-the-art GPU implementations by 10%.

6 Conclusion

In this paper, a number of methods and tools have been compared that aim at porting Convolutional Neural
Networks onto FPGAs. At the network level, approximate computing and datapath optimization methods have
been covered while at the neuron level, the optimizations of convolutional and fully connected layers have been
detailed and compared. All the different degrees of freedom offered by FPGAs (custom data types, local data
streams, dedicated processors, etc.) are exploited by the presented methods. Moreover, algorithmic and datapath
optimizations can a should be jointly implemented, resulting in additive hardware performance gains.

CNNs are by nature overparameterized and support particularly well approximate computing techniques
such as weight pruning and fixed point computation. Approximate computing already constitutes a key to CNN
acceleration over hardware and will certainly continue driving the performance gains in the years to come.

8These format represents a matrix by three one-dimensional arrays, that respectively contain nonzero values, row indices and column
indices
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