线段树题目整合

本文精选了一系列线段树算法的经典题目,涵盖区间更新、区间查询、扫描线等核心概念,并探讨了非递归线段树及树套树的高级应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1.hdu1166 敌兵布阵
更新节点,区间求和。


2.hdu1754 I Hate It
更新节点,区间最值.

.
3.hdu1698 Just a Hook
成段更新,总区间求和.

.
4.hdu1394 Minimum Inversion Number
更新节点,区间求和

.
5.hdu1779 (这个爆炸了,别做了)
成段更新,区间最值

.
6.pku2777 Count Color
成段更新,区间统计,位运算加速

.
7.pku3468 A Simple Problem with Integers
成段更新,区间求和(中间乘法会超int)

.
8.pku2528 Mayor’s posters
成段更新,区间统计(离散化)

一个很恶心的题目,昨天晚上看了题意,上网了解了一下离散化。离散化就是为了缩短线段的范围,如两个线段(1,6)和(4,9),离散化一下就是1->1,6->3,4->2,9->4,那么离散后的线段就是(1,3)和(2,4),把线段长度从(1,9)缩短到了(1,4),这种离散化是很实用的。离散的过程就是先把线段的坐标保存下来(1,6,4,9),再排序(1,4,6,9),之后对应(1->1,4->2,6->3,9->4),再根据这个对应修改原先的线段就好了。

.
9.hdu2795 Billboard
更新节点,询问特殊

.
10.pku3667 Hotel
成段更新,寻找空间(经典类型,求一块满足条件的最左边的空间)

.
11.hdu1540 Tunnel Warfare
更新节点,询问节点所在区间(同上一道Hotel一样类型的题目)

.
12.hdu2871 Memory Control
hotel变形题目,三个都函数一样

.
13.hdu3016 Man Down
成段更新,单点查询(简单线段树+简单DP)

.
14.hdu1542 Atlantis
矩形面积并,扫描线法

.
15.hdu1255 覆盖的面积
同上,扫描线法,我多加了一个系数csum,来统计覆盖两次的长度

.
16.hdu1828 Picture
扫描线,同面积统计,加了一个num_Seg统计一个扫描区域里的边

.
17.pku1436 Horizontally Visible Segments
成段更新,成段询问

.
18.pku3225 Help with Intervals
成段更新,总询问区间(有个异或操作比较新颖)

.
19.pku2482 Stars in Your Window
成段更新,区间最值 + 扫描线(中间二分的地方会int溢出)

.
20.pku2828 Buy Tickets
思维很巧妙,倒过来做的话就能确定此人所在的位置

.
21.pku2464 Brownie Points II
更新节点,区间求和 + 扫描线(用两个线段树沿着扫描线更新,然后按”自己最多,对方最少”的方案一路统计)

.
22.pku3145 Harmony Forever
查找一个区间内最左边的数,询问的val大的话用线段树,小的话线性扫描

.
23.pku2886 Who Gets the Most Candies?
寻找区间中的左数第N个数,约瑟夫环(学到了反素数表,可以不用把所有数字预处理出来了)

.
24.pku2991 Crane
记录了线段的两端点以及转过的角度,成段的转,超有意思的题目,做了之后会对线段树理解更深刻

.
25.hdu1823 Luck and Love
二维线段树,题目和运用范围都没一维的广,随便找了道题目练习下就好

.

适合非递归线段树的题目:


Codeforces 612D  The Union of k-Segments :  题解
题意:线段求交,给定一堆线段,按序输出被覆盖k次或以上的线段和点。
基础题,先操作,最后一次下推标记,然后输出,
维护两个线段树,一个线段覆盖,一个点覆盖。

Codeforces 35E Parade : 题解

题意:给定若干矩形,下端挨着地面,求最后的轮廓形成的折线,要求输出每一点的坐标。

思路:虽然是区间修改的线段树,但只需要在操作结束后一次下推标记,然后输出,所以适合非递归线段树。


URAL 1846 GCD2010 :  题解

题意:总共10万个操作,每次向集合中加入或删除一个数,求集合的最大公因数。(规定空集的最大公因数为1)


Codeforces 12D Ball :   题解

题意:

给N (N<=500000)个点,每个点有x,y,z ( 0<= x,y,z <=10^9 )

对于某点(x,y,z),若存在一点(x1,y1,z1)使得x1 > x && y1 > y && z1 > z 则点(x,y,z)是特殊点。

问N个点中,有多少个特殊点。


提示:排序+线段树


Codeforces 19D Points : 题解

题意:

给定最多20万个操作,共3种:

1.add x y         :加入(x,y)这个点

2.remove x y  :删除(x,y)这个点

3.find x y         :找到在(x,y)这点右上方的x最小的点,若x相同找y最小的点,输出这点坐标,若没有,则输出-1.

提示:排序,线段树套平衡树


Codeforces 633E Startup Funding : 题解

这题需要用到一点概率论,组合数学知识,和二分法。

非递归线段树在这题中主要解决RMQ问题(区间最大最小值问题),由于不带修改,这题用Sparse Table求解RMQ是标答。

因为RMQ询问是在二分法之内求的,而Sparse Table可以做到O(1)查询,所以用Sparse Table比较好,总复杂度O(n*log(n))。

不过非递归线段树也算比较快的了,虽然复杂度是O(n*log(n)*log(n)),还是勉强过了这题。


扫描线题目:

POJ 1177 Picture:给定若干矩形求合并之后的图形周长    题解
HDU 1255 覆盖的面积:给定平面上若干矩形,求出被这些矩形覆盖过至少两次的区域的面积.   题解
HDU 3642 Get The Treasury:给定若干空间立方体,求重叠了3次或以上的体积(这个是扫描面,每个面再扫描线)题解
POJ 2482 Stars in your window : 给定一些星星的位置和亮度,求用W*H的矩形能够框住的星星亮度之和最大为多少。    题解

递归线段树题目:

Codeforces 558E A Simple Task   题解

给定一个长度不超过10^5的字符串(小写英文字母),和不超过5000个操作。

每个操作 L R K 表示给区间[L,R]的字符串排序,K=1为升序,K=0为降序。

最后输出最终的字符串。


Codeforces 527C Glass Carving  :   题解
给定一个矩形,不停地纵向或横向切割,问每次切割后,最大的矩形面积是多少。

URAL1989 Subpalindromes     题解
给定一个字符串(长度<=100000),有10万个操作。
操作有两种:   
1:改变某个字符。 
2:判断某个子串是否构成回文串。 

HDU 4288 Coder :   题解
 题意:对一个集合进行插入与删除操作。要求询问某个时刻,集合中的元素从小到大排序之后,序号%5 ==3 的元素值之和。
这题其实不一定要用线段树去做的,不过线段树还是可以做的。

HDU 2795 BillBoard :  题解

题意:有一个板,h行,每行w长度的位置。每次往上面贴一张海报,长度为1*wi .

每次贴的时候,需要找到最上面的,可以容纳的空间,并且靠边贴。


Codeforces 374D Inna and Sequence : 题解
题意:给定百万个数a[m],然后有万个操作,每次给现有序列加一个字符(0或1),或者删掉已有序列中,第 a[0] 个,第a[1]个,...,第a[m]个。

Codeforces 482B Interesting Array:   题解

题意就是,给定n,m.

满足m个条件的n个数,或说明不存在。

每个条件的形式是,给定 Li,Ri,Qi ,要求   a[Li]&a[Li+1]&...&a[Ri] = Qi ;

Codeforces 474E Pillar (线段树+动态规划):  题解

题意就是,给定10^5 个数(范围10^15),求最长子序列使得相邻两个数的差大于等于 d。


POJ 2777  Count Color :   题解

给线段涂颜色,最多30种颜色,10万个操作。

每个操作给线段涂色,或问某一段线段有多少种颜色。

30种颜色用int的最低30位来存,然后线段树解决。


URAL 1019 Line Painting: 线段树的区间合并  题解

给一段线段进行黑白涂色,最后问最长的一段白色线段的长度。


Codeforces 633H Fibonacci-ish II  :题解

这题需要用到莫队算法(Mo's Algorithm)+线段树区间修改,不过是单边界的区间,写起来挺有趣。

另一种解法就是暴力,很巧妙的方法,高复杂度+低常数居然就这么给过了。


树套树题目:

ZOJ 2112 Dynamic Rankings 动态区间第k大   题解
做法:树状数组套主席树 或者 线段树套平衡树

Codeforces 605D  Board Game :  题解
做法:广度优先搜索(BFS)  +  线段树套平衡树

Codeforces 19D Points : 题解

题意:

给定最多20万个操作,共3种:

1.add x y         :加入(x,y)这个点

2.remove x y  :删除(x,y)这个点

3.find x y         :找到在(x,y)这点右上方的x最小的点,若x相同找y最小的点,输出这点坐标,若没有,则输出-1.

提示:排序,线段树套平衡树



我正在编辑【c++】代码,题目是 # P4088 [USACO18FEB] Slingshot P ## 题目描述 Farmer John 最不喜欢的农活之一就是到处搬运牛粪。为了简化这一过程,他想出了一个有趣的主意:与其用拖拉机后面的拖车搬运牛粪,为什么不通过一个巨大的牛粪弹弓将其射到空中呢?(确实,可能会出什么问题呢……) Farmer John 的农场建在一条笔直的长路上,因此农场上的任何位置都可以简单地用其在这条路上的位置来描述(实际上就是数轴上的一个点)。FJ 建造了 $N$ 个弹弓($1 \leq N \leq 10^5$),其中第 $i$ 个弹弓由三个整数 $x_i$、$y_i$ 和 $t_i$ 描述,表示这个弹弓可以将牛粪从位置 $x_i$ 射到位置 $y_i$,仅需 $t_i$ 个单位时间。 FJ 有 $M$ 堆牛粪需要搬运($1 \leq M \leq 10^5$)。第 $j$ 堆牛粪需要从位置 $a_j$ 搬运到位置 $b_j$。用拖拉机搬运牛粪,每移动距离 $d$ 需要 $d$ 个单位时间。FJ 希望通过允许每堆牛粪最多使用一次弹弓来减少搬运时间。FJ 在没有牛粪的情况下移动拖拉机的时间不计入搬运时间。 对于每堆牛粪,请帮助 FJ 确定在最多使用一次弹弓的情况下,搬运所需的最少时间。 ## 输入格式 输入的第一行包含 $N$ 和 $M$。接下来的 $N$ 行每行描述一个弹弓,包含三个整数 $x_i$、$y_i$ 和 $t_i$($0 \leq x_i, y_i, t_i \leq 10^9$)。最后的 $M$ 行描述需要搬运的牛粪堆,每行包含两个整数 $a_j$ 和 $b_j$。 ## 输出格式 输出 $M$ 行,每行对应一堆牛粪,表示搬运所需的最少时间。 ## 输入输出样例 #1 ### 输入 #1 ``` 2 3 0 10 1 13 8 2 1 12 5 2 20 7 ``` ### 输出 #1 ``` 4 3 10 ``` ## 说明/提示 在这里,第一堆牛粪需要从位置 $1$ 搬运到位置 $12$。如果不使用弹弓,这将花费 $11$ 个单位时间。然而,使用第一个弹弓,花费 $1$ 个单位时间将牛粪移动到位置 $0$(弹弓的起点),$1$ 个单位时间将牛粪射到位置 $10$(弹弓的终点),然后花费 $2$ 个单位时间将牛粪移动到位置 $12$。第二堆牛粪最好不使用弹弓搬运,而第三堆牛粪应使用第二个弹弓搬运。 ,请帮我检查并改正错误点。我的原始代码如下: #include<bits/stdc++.h> using namespace std; const int N=1e5+5; int n,m; struct Node{ int x,y,z; }a[2*N]; bool cmp1(Node x,Node y){ if(x.x!=y.x){ return x.x<y.x; } if(x.z!=y.z){ return x.z>y.z; } if(x.y!=y.y){ return x.y<y.y; } return 1; } bool cmp2(Node x,Node y){ if(x.x!=y.x){ return x.x>y.x; } if(x.z!=y.z){ return x.z>y.z; } if(x.y!=y.y){ return x.y<y.y; } return 1; } int ans[N]; int lowbit(int x){ return x&(-x); } class xdtr{ public: struct Node{ int l,r; int mi; Node *cl,*cr; int mid(){ return (l+r)/2; } }; int h; Node tr[N*4]; Node* add(int l,int r){ tr[++h]={l,r,(int)1e9,nullptr,nullptr}; return &tr[h]; } Node* head; xdtr(){ h=0; head=add(0,n); } Node* zl(Node *x){ if(x->cl==nullptr){ x->cl=add(x->l,x->mid()); } return x->cl; } Node* zr(Node *x){ if(x->cr==nullptr){ x->cr=add(x->mid()+1,x->r); } return x->cr; } void push_up(Node *x){ x->mi=min(zl(x)->mi,zr(x)->mi); } int query(Node *x,int l,int r){ if((l<=x->l)&&(x->r<=r)){ return x->mi; } int ans=1e9; if(x->mid()<r){ ans=min(ans,query(zl(x),l,r)); } if(l<x->mid()){ ans=min(ans,query(zr(x),l,r)); } return ans; } int query(int l,int r){ return query(head,l,r); } void update(Node *x,int r,int a){ if((r==x->l)&&(x->r==r)){ x->mi=min(x->mi,a); } if(x->mid()<r){ update(zl(x),r,a); } if(r<x->mid()){ update(zr(x),r,a); } push_up(x); } void update(int x,int a){ } }w1,w2,w3,w4; int main(){ cin>>n>>m; for(int i=1;i<=n;++i){ cin>>a[i].x>>a[i].y>>a[i].z; } for(int i=1;i<=m;++i){ cin>>a[n+i].x>>a[n+i].y; a[n+i].z=-i; ans[i]=abs(a[n+i].x>>a[n+i].y); } sort(a+1,a+1+n+m,cmp1); for(int i=1;i<=n+m;++i){ if(a[i].z<0){ ans[-a[i].z]=min(ans[-a[i].z],w2.query(0,a[i].y)+a[i].x+a[i].y); ans[-a[i].z]=min(ans[-a[i].z],w3.query(a[i].y,n)+a[i].x-a[i].y); }else{ w2.update(a[i].y,-a[i].x-a[i].y+a[i].z); w3.update(a[i].y,-a[i].x+a[i].y+a[i].z); } } sort(a+1,a+1+n+m,cmp2); for(int i=1;i<=n+m;++i){ if(a[i].z<0){ ans[-a[i].z]=min(ans[-a[i].z],w1.query(0,a[i].y)-a[i].x+a[i].y); ans[-a[i].z]=min(ans[-a[i].z],w4.query(a[i].y,n)-a[i].x-a[i].y); }else{ w1.update(a[i].y,+a[i].x-a[i].y+a[i].z); w4.update(a[i].y,+a[i].x+a[i].y+a[i].z); } } for(int i=1;i<=m;++i){ cout<<ans[i]<<endl; } return 0; }
03-11
<think>好的,我现在需要帮助用户检查他们的C++代码,解决P4088 [USACO18FEB] Slingshot P的问题。首先,我得仔细阅读题目描述,理解问题需求。 题目大意是说,Farmer John有N个弹弓,每个弹弓可以将牛粪从x_i运到y_i,花费t_i时间。然后有M次查询,每次需要将牛粪从a_j运到b_j。可以选择不使用弹弓,直接运输,时间就是两点之间的距离;或者选择使用一个弹弓,那么运输时间包括从a_j到弹弓起点x_i的时间,加上弹弓的时间t_i,再加上从y_i到b_j的时间。我们需要对每个查询,计算这两种情况中的最小值。 用户的代码看起来是想通过某种数据结构来处理这个问题。但显然代码中有一些错误,比如线段树的实现部分,还有排序比较函数的问题,以及一些变量名或运算符错误。 首先,我来看看用户的代码结构。用户定义了结构体Node,其中包含x、y、z三个字段,可能分别代表弹弓的起点、终点、时间,或者查询的a_j、b_j和标识符。然后用户将弹弓和查询混合在一个数组a中,排序后进行处理。 在main函数中,用户将弹弓和查询合并到一个数组里,排序后进行两次不同的处理,分别使用不同的比较函数cmp1和cmp2。然后,每次处理时,根据是否是查询(通过z的正负来判断),更新线段树中的值或者查询最小值。 接下来,我需要找出代码中的错误点: 1. 在ans的初始化部分,用户写的是ans[i] = abs(a[n+i].x >> a[n+i].y)。这里的“>>”应该是“-”操作符,因为用户想计算a_j到b_j的直接距离,即|a_j - b_j|。而位运算符“>>”会导致错误的结果。比如,如果a_j是5,b_j是2,那么5>>2是1,而正确的距离是3。这明显是一个低级错误,必须修正。 2. 线段树的实现存在问题。在用户定义的xdtr类中,update函数的实现不正确。当前的update函数中,递归调用时没有正确划分区间。比如,当处理右子树时,应该是mid+1到r,但用户的条件判断可能有问题。此外,线段树的update操作需要确保找到正确的节点,并且递归更新后合并结果。用户当前的update函数中,条件判断可能不正确,导致无法正确更新线段树中的节点。例如,原代码中的update函数中的条件判断写反了,应该根据r的位置决定进入左子树还是右子树。 3. 在线段树的query函数中,用户在处理左右子树的递归调用时,条件判断可能有误。比如,原代码中的判断条件是if (x->mid() < r) 则查询左子树,这似乎有问题。正确的逻辑应该是,如果查询区间的左边界在mid的左边,则进入左子树,或者右边界在mid右边则进入右子树。或者可能条件写反了,导致查询范围不正确。 4. 线段树的初始化可能存在错误。用户创建线段树的根节点时,使用add(0, n),但这里的n可能是指弹弓的数量,而线段树维护的可能是坐标的范围,但坐标的范围可能很大(题目中坐标可以到1e9),所以直接使用这样的线段树可能无法处理。这说明用户可能误解了线段树的结构,应该对坐标进行离散化处理,否则线段树节点会过多,导致内存不足或运行错误。 5. 比较函数cmp1和cmp2可能存在错误。例如,cmp1中对x.x的比较是升序排列,而cmp2中是降序。这可能与后续的处理有关,比如弹弓的x坐标和查询的x坐标之间的关系,从而影响到线段树的查询和更新顺序是否正确。需要确认排序逻辑是否正确,以确保处理顺序的正确性。 6. 在线段树的更新部分,比如w2.update的参数是否正确。例如,弹弓的y坐标是否被正确插入线段树中,而线段树的节点可能没有正确离散化,导致无法正确维护最小值。 7. 用户可能没有对坐标进行离散化处理,导致线段树无法处理大范围的坐标。例如,弹弓的y坐标可能高达1e9,而线段树的每个节点都维护一个具体坐标的话,会导致线段树的深度极大,无法有效构建。因此,必须将y坐标离散化,将坐标映射到较小的索引范围内,才能使用线段树进行有效处理。 8. 用户代码中的线段树类xdtr中的update函数实现不完整。在用户代码的update函数中,参数是r和a,但代码中的实现似乎只处理了当前节点的更新条件,而没有正确递归到子节点。例如,原代码中的update函数中,当处理右子树时,可能错误地进入左子树的条件,导致无法正确更新对应的位置。 现在,我需要逐一分析这些错误,并给出修正建议。 首先,关于ans的初始化错误。用户的代码中将直接运输的时间计算为abs(a_j - b_j),但写成了a_j >> b_j。应该将>>改为-。例如,原代码中的: ans[i]=abs(a[n+i].x>>a[n+i].y); 应该改为: ans[i] = abs(a[n+i].x - a[n+i].y); 这是一个明显的运算符错误,必须修正。 其次,线段树的离散化问题。原题中的坐标范围很大,无法直接建立线段树。因此,用户需要将所有的y坐标(弹弓的y_i和查询中的b_j)收集起来,进行排序和去重,得到一个离散化的坐标列表,然后在线段树中使用这些离散后的索引。否则,线段树无法处理高达1e9的坐标,导致内存爆炸或者递归过深。用户当前的代码中没有进行离散化,所以这是必须修正的问题。 第三,线段树的update和query函数的实现是否正确。比如,在用户的query函数中,当前的条件判断: if(x->mid() < r) { // 进入左子树?这可能不正确,因为mid是中间值,若查询的r大于mid,应该进入右子树? 这似乎有问题。正确的逻辑是,如果当前节点的左子节点的右端点(x->mid())大于等于查询的左端点,则需要进入左子树;而如果右子节点的左端点(x->mid()+1)小于等于查询的右端点,则需要进入右子树。例如,正确的条件可能应该是: 如果左子节点的区间和查询区间有交集,则递归左子树;同理处理右子树。用户的代码中的条件可能颠倒了左右子树的处理方向,导致查询错误。 例如,原代码中的query函数: int query(Node *x,int l,int r){ if((l<=x->l)&&(x->r<=r)){ return x->mi; } int ans=1e9; if(x->mid() < r){ ans=min(ans,query(zl(x),l,r)); } if(l < x->mid()){ ans=min(ans,query(zr(x),l,r)); } return ans; } 这里的条件判断可能不正确。比如,当查询的r大于x->mid()时,可能应该进入右子树,而用户这里进入的是左子树?或者可能条件写反了? 举个例子,比如当前节点的区间是[0,4],mid是2。如果查询的r是3,那么x->mid()(即2) < r(3)为真,所以进入左子树。左子树的区间是[0,2],而查询的r是3,此时进入左子树可能无法覆盖到整个查询范围。正确的做法应该是,根据查询区间是否与左子树或右子树的区间有重叠来决定是否递归。 正确的条件应该是: 如果查询的区间的左边界 <= x->mid(),则需要递归左子树; 如果查询的右边界 > x->mid(),则需要递归右子树。 因此,用户的条件判断可能颠倒了左右子树的处理。例如,对于左子树的条件,应该是判断是否有交集,而不是当前节点的mid是否小于r。因此,原代码中的条件判断是错误的,需要修正。 例如,正确的条件可能是: if (l <= x->mid()) { ans = min(ans, query(zl(x), l, r)); } if (r > x->mid()) { ans = min(ans, query(zr(x), l, r)); } 但原代码中的条件是: if(x->mid() < r){ ans=min(ans,query(zl(x),l,r)); } if(l <x->mid()){ ans=min(ans,query(zr(x),l,r)); } 这可能错误。例如,当x->mid() < r,说明r在右子树中,应该进入右子树,但原代码却进入了左子树。因此,这里的条件判断是错误的,导致查询的范围不正确。这会导致线段树的查询结果错误,必须修正。 同理,在update函数中的条件判断可能也存在同样的问题。例如,原代码中的update函数: void update(Node *x,int r,int a){ if((r==x->l)&&(x->r==r)){ x->mi=min(x->mi,a); } if(x->mid() < r){ update(zl(x),r,a); } if(r < x->mid()){ update(zr(x),r,a); } push_up(x); } 这里的逻辑似乎是要找到r所在的叶节点,然后更新。但是,条件判断中的x->mid() < r和r < x->mid()可能有错误。例如,如果r在右子树(即r > x->mid()),那么应该进入右子树,但原代码的条件是x->mid() < r时进入左子树?这明显是错误的。比如,当前节点的mid是5,r是6,x->mid() < r为真,则进入左子树?这显然不正确。正确的做法应该是根据r所在的位置决定进入左子树还是右子树。 所以,update函数的条件判断是错误的。正确的逻辑应该是: 如果当前节点是叶子节点,就更新它的mi值。否则,如果r <= x->mid(),递归左子树;否则,递归右子树。然后push_up。 但用户当前的代码中的条件判断是错误的。例如,当r在右子树时,原代码的条件x->mid() < r成立,此时进入左子树?这显然错误。正确的应该是,如果r在右子树,那么应该进入右子树,而原代码中的条件判断可能颠倒了左右。 这说明用户的线段树实现存在严重的逻辑错误,导致更新和查询操作无法正确执行。必须重新设计线段树的update和query函数。 此外,用户在线段树的初始化时,可能没有正确设置线段树的区间范围。例如,原代码中的w1,w2,w3,w4线段树,它们的初始区间可能设置得不正确。比如,xdtr的构造函数中,创建根节点时,使用add(0, n),其中n是弹弓数量,这可能不正确,因为线段树的区间应该覆盖离散化后的y坐标的范围,而不是弹弓的数量。这进一步说明用户未进行离散化处理,导致线段树的结构错误。 另外,用户在线段树的更新操作中,比如w2.update(a[i].y, ...),此时a[i].y的值可能非常大(如1e9),而线段树的区间可能没有被正确离散化,导致线段树无法处理这样的坐标。因此,离散化步骤是必须的。 综上所述,用户的代码存在以下主要问题: 1. 运算符错误:在计算初始距离时,将减法写成了右移运算符。 2. 未进行坐标离散化:导致线段树无法处理大范围的坐标,必须收集所有可能的y坐标(弹弓的y_i和查询的b_j)进行离散化。 3. 线段树的query和update函数中的条件判断错误,导致递归进入错误的子树。 4. 线段树的初始化区间范围错误,应该基于离散化后的坐标范围,而非弹弓数量n。 5. 比较函数cmp1和cmp2可能未正确排序,影响后续处理顺序。 6. 线段树的update函数实现不完整,比如用户定义的xdtr类中的update函数参数列表与实际调用不匹配。例如,用户代码中的void update(int x, int a)的函数体是空的,这会导致编译错误或者运行时错误。 现在,我需要逐步修正这些问题。 首先,运算符错误:将>>改为-。 其次,离散化处理。需要收集所有弹弓的y_i和所有查询的b_j,将它们排序并去重,得到一个离散化的数组。然后,在线段树中使用离散化后的索引,而不是原始坐标。 第三,修正线段树的查询和更新逻辑。确保在递归时正确进入左子树或右子树。 第四,比较函数是否正确?例如,在第一次排序cmp1中,用户是否按x升序排列,而在处理时,是否按照x从小到大处理弹弓和查询?这可能涉及到离线处理的方式是否正确。比如,对于每个查询(a_j, b_j),可能要考虑弹弓的x_i <= a_j的情况,或者x_i >= a_j的情况,这取决于问题的处理方式。 原题中的思路可能需要分情况讨论弹弓的使用情况。例如,考虑两种情况:弹弓的起点x_i在a_j的左边或右边,以及弹弓的终点y_i在b_j的左边或右边。可能,这需要拆分成四种情况,并用不同的公式计算总时间,并维护不同的线段树来查询最小值。 比如,对于弹弓i的使用,总时间为: 时间 = |a_j - x_i| + t_i + |y_i - b_j| 这可以分解为不同的情况。例如,将式子展开为四种情况: 1. x_i <= a_j,y_i <= b_j → (a_j - x_i) + (b_j - y_i) + t_i = (a_j + b_j) + (-x_i - y_i) + t_i 2. x_i <= a_j,y_i >= b_j → (a_j - x_i) + (y_i - b_j) + t_i = (a_j - b_j) + (-x_i + y_i) + t_i 3. x_i >= a_j,y_i <= b_j → (x_i - a_j) + (b_j - y_i) + t_i = (-a_j + b_j) + (x_i - y_i) + t_i 4. x_i >= a_j,y_i >= b_j → (x_i - a_j) + (y_i - b_j) + t_i = (x_i + y_i) - (a_j + b_j) + t_i 然后,可以将这些表达式中的变量进行分离,以便用不同的线段树来维护不同条件下的最小值。例如,对于情况1,式子可以表示为(a_j + b_j) + [t_i -x_i -y_i]。这部分的[t_i -x_i -y_i]对于每个弹弓来说是一个定值,当处理查询时,a_j + b_j是固定的,因此需要找到最小的[t_i -x_i -y_i],然后加上a_j + b_j即可。这种情况下,线段树需要维护弹弓的y_i的值对应的最小值。 但为了处理这些不同的情况,可能需要将弹弓按照x_i和y_i的方向进行排序,并在线段树中维护相应的最小值。例如,当处理情况1时,可能需要弹弓的x_i <= a_j且y_i <= b_j,因此需要将弹弓按照x_i排序,并且在查询时找到所有x_i <= a_j,并且y_i <= b_j的弹弓,然后取对应的最小值。 但这可能比较复杂,所以常见的做法是离线处理所有查询,将弹弓和查询按一定顺序排序,然后利用扫描线的方法,逐步将弹弓添加到线段树中,同时处理查询,这样可以确保在处理查询时,线段树中已经包含了所有满足条件的弹弓。 例如,对于情况1,可以按照x_i从小到大排序弹弓和查询的a_j。当处理查询时,所有x_i <= a_j的弹弓已经被处理过,并被插入到线段树中。线段树维护的是y_i <= b_j对应的最小值。此时,对于查询,可以查询线段树中y_i <= b_j的最小值,然后加上a_j + b_j得到情况1的总时间。 类似地,其他情况也需要不同的排序和线段树维护方式。这可能需要多次扫描和不同的线段树结构。 用户的代码中似乎处理了四个线段树(w1, w2, w3, w4),这可能对应四种不同的情况。例如: - w2对应情况1:式子为a_j + b_j + (t_i -x_i -y_i) → 最小值是 (t_i -x_i -y_i),所以线段树维护这个值,当查询时,如果y_i <= b_j,则取最小值加上a_j + b_j。 - w3对应情况2:式子为a_j - b_j + (t_i -x_i + y_i) → 需要维护t_i -x_i + y_i的最小值,当y_i >= b_j。 - w1和w4可能对应其他两种情况。 但用户可能没有正确实现这些逻辑,或者线段树的维护方式存在错误。 回到用户的代码,我需要更仔细地分析其逻辑。 在第一次排序(cmp1)后,用户将弹弓和查询按x升序排列。对于每个弹弓,用户将其插入到w2和w3线段树中。对于每个查询,用户查询w2线段树中的最小值,其中y <=当前查询的b_j,以及w3线段树中y >=当前查询的b_j的情况。例如: 当处理到某个查询时,此时已经处理了所有x_i <= a_j的弹弓。此时,对于这些弹弓,用户可能将这些弹弓的某些值插入到线段树中。例如,w2维护的是某个与y相关的值,当弹弓的y_i <=当前查询的b_j时,可以获取对应的最小值。 在第二次排序(cmp2,按x降序),处理弹弓的x_i >= a_j的情况,此时可能处理另外两种情况,使用w1和w4线段树。 但是,用户的线段树实现存在离散化的问题,以及查询和更新条件错误的问题,导致无法正确获取最小值。 现在,针对这些错误,我需要逐步修正。 首先,修正运算符错误:将ans[i]=abs(a[n+i].x>>a[n+i].y)改为ans[i]=abs(a[n+i].x - a[n+i].y)。 其次,实现离散化。收集所有弹弓的y_i和所有查询的b_j,然后排序去重,得到离散化的数组。例如: vector<int> ys; for 所有弹弓i,添加y_i到ys; for 所有查询j,添加b_j到ys; 排序并去重ys; 然后,对于每个y,可以用lower_bound找到对应的离散化后的索引。 然后,线段树的区间应基于离散化后的索引范围,而不是原始的坐标。例如,离散化后的坐标数目为k,线段树的区间是[0, k-1],每个索引对应一个离散化的y值。 第三,修正线段树的query和update逻辑。例如,在query函数中,正确的条件判断应该是: void query(Node *x, int l, int r) { if (x的区间完全包含在[l, r]中) 返回x->mi; int mid = x->mid(); int ans = INF; if (l <= mid) ans = min(ans, query左子树); if (r > mid) ans = min(ans, query右子树); return ans; } 同样,在update函数中,应该根据r的位置,判断是进入左子树还是右子树。例如,在离散化的索引中,要找到对应的位置,并递归更新。 第四,修正线段树的初始化和构建方式。例如,线段树的根节点的区间应该是离散化后的最小和最大索引,而不是n的值。 第五,检查比较函数是否正确。例如,cmp1和cmp2的排序顺序是否确保在处理查询时,所有满足条件的弹弓已经被处理。例如,cmp1是按x升序排列,因此当处理到某个查询时,所有x_i <= a_j的弹弓已经被处理,可以插入到线段树中。这可能正确,但需要确保比较函数中的排序是正确的。 第六,检查线段树的更新和查询时的参数是否正确。例如,在弹弓的y_i离散化后的索引是否正确,查询时是否使用离散化后的b_j的索引。 现在,我需要具体分析用户的代码,并逐步修正。 首先,处理运算符错误: 原代码中: ans[i]=abs(a[n+i].x>>a[n+i].y); 应改为: ans[i]=abs(a[n+i].x - a[n+i].y); 这是一个明显的错误。 接下来,离散化处理。 用户代码中的线段树需要维护y坐标的值。但由于y坐标的范围可能很大,必须离散化。 所以,在main函数开始处,收集所有的y_i(弹弓)和b_j(查询),然后将它们离散化。 修改后的代码可能如下: 在main函数中: vector<int> ys; for (int i = 1; i <= n; ++i) { cin >> a[i].x >> a[i].y >> a[i].z; ys.push_back(a[i].y); // 弹弓的y_i } for (int i = 1; i <= m; ++i) { cin >> a[n+i].x >> a[n+i].y; a[n+i].z = -i; ys.push_back(a[n+i].y); // 查询的b_j } sort(ys.begin(), ys.end()); ys.erase(unique(ys.begin(), ys.end()), ys.end()); int cnt = ys.size(); // 离散化后的坐标数目 然后,对于每个弹弓的y_i和查询的b_j,将其转换为离散化的索引。例如: 在预处理弹弓和查询时,将它们的y值替换为离散化的索引。或者在线段树中处理离散化的索引。 例如,在弹弓处理时: for (int i = 1; i <= n; ++i) { a[i].y = lower_bound(ys.begin(), ys.end(), a[i].y) - ys.begin() + 1; // 假设离散化后的索引从1开始 } for (int i = 1; i <= m; ++i) { a[n+i].y = lower_bound(ys.begin(), ys.end(), a[n+i].y) - ys.begin() + 1; } 这样,所有y相关的坐标都被转换为离散化的索引,范围在1到cnt之间。 然后,线段树的初始区间应该是1到cnt,而不是n或者其他数值。例如,在xdtr的构造函数中: head = add(1, cnt); // 假设离散化后的索引从1开始 这样,线段树的区间范围正确。 然后,在线段树的query和update中,处理的是离散化后的索引。 现在,处理线段树的query和update函数的逻辑错误。 原代码中的query函数: int query(Node *x, int l, int r) { if (x的区间被包含) return x->mi; int ans = INF; if (x->mid() < r) { ans = min(ans, query左子树); } if (l < x->mid()) { ans = min(ans, query右子树); } } 这里的条件判断是错误的。正确的方式是: 如果当前查询的l <= x->mid(),则递归左子树; 如果当前查询的r > x->mid(),则递归右子树。 例如: 修改为: int query(Node *x, int l, int r) { if (x->l >= l && x->r <= r) { return x->mi; } int ans = 1e9; int mid = x->mid(); if (l <= mid) { ans = min(ans, query(zl(x), l, r)); } if (r > mid) { ans = min(ans, query(zr(x), l, r)); } return ans; } 同样,在update函数中: void update(Node *x, int pos, int val) { if (x->l == x->r) { x->mi = min(x->mi, val); return; } int mid = x->mid(); if (pos <= mid) { update(zl(x), pos, val); } else { update(zr(x), pos, val); } push_up(x); } 注意,这里的pos是离散化的索引,需要确保在正确的子节点中更新。 用户原来的update函数中的参数是r,但可能应该是一个位置pos。比如,函数应该更新pos位置的值。原代码中的update函数中的参数是r,可能想表示要更新的位置是r,但逻辑错误。 此外,用户在线段树的类中,原代码中的update函数: void update(Node *x, int r, int a) { if ((r == x->l) && (x->r == r)) { x->mi = min(x->mi, a); return; } if (x->mid() < r) { update(zl(x), r, a); } if (r < x->mid()) { update(zr(x), r, a); } push_up(x); } 这里的条件判断是错误的。例如,如果当前节点的区间是[5,10],mid是7,而r是8,那么x->mid() < r为7 <8,所以进入左子树?但左子树的区间是[5,7],而r是8显然不在左子树中。因此,这导致错误的递归路径,无法正确找到要更新的位置。 正确的做法是,在递归时,比较pos和mid的大小,决定进入左或右子树。例如,如果pos <= mid,进入左子树,否则进入右子树。因此,修改后的update函数应该类似于: void update(Node *x, int pos, int val) { if (x->l == x->r) { x->mi = min(x->mi, val); return; } int mid = x->mid(); if (pos <= mid) { update(zl(x), pos, val); } else { update(zr(x), pos, val); } push_up(x); } 而用户原来的update函数的参数名可能混淆了pos和r。需要将参数名改为pos,并修改递归条件。 此外,用户的xdtr类中的update函数有一个重载: void update(int x, int a) { // 空实现 } 这显然不正确。正确的实现应该调用head节点的update,并传入离散化后的坐标x,值a。例如: void update(int pos, int val) { update(head, pos, val); } 但用户的原始代码中这个函数是空的,导致调用时无法正确更新线段树。这需要补全实现。 现在,整合这些修改点,对用户的代码进行修正: 步骤: 1. 修正ans的初始化错误。 2. 收集所有y坐标进行离散化。 3. 修改线段树的query和update函数的条件判断。 4. 补全线段树的update函数的实现。 5. 修正线段树的初始化区间为离散化后的范围。 6. 其他可能的问题,如比较函数是否正确。 现在,针对用户的原始代码,给出修改后的代码。 首先,添加离散化步骤: 在main函数开头: cin >> n >> m; vector<int> ys; 然后读取弹弓和查询,收集y_i和b_j: for (int i = 1; i <= n; ++i) { cin >> a[i].x >> a[i].y >> a[i].z; ys.push_back(a[i].y); } for (int i = 1; i <= m; ++i) { cin >> a[n+i].x >> a[n+i].y; a[n+i].z = -i; ys.push_back(a[n+i].y); } 然后离散化: sort(ys.begin(), ys.end()); ys.erase(unique(ys.begin(), ys.end()), ys.end()); int cnt = ys.size(); 然后,处理每个弹弓和查询的y坐标: for (int i = 1; i <= n; ++i) { a[i].y = lower_bound(ys.begin(), ys.end(), a[i].y) - ys.begin() + 1; // 离散化为1-based索引 } for (int i = 1; i <= m; ++i) { int idx = n + i; a[idx].y = lower_bound(ys.begin(), ys.end(), a[idx].y) - ys.begin() + 1; } 接下来,修正线段树的query和update函数: 在xdtr类中,修改query函数: int query(Node *x, int l, int r) { if (x->l >= l && x->r <= r) { return x->mi; } int ans = 1e9; int mid = x->mid(); if (l <= mid) { ans = min(ans, query(zl(x), l, r)); } if (r > mid) { ans = min(ans, query(zr(x), l, r)); } return ans; } 修改update函数: void update(Node *x, int pos, int val) { if (x->l == x->r) { x->mi = min(x->mi, val); return; } int mid = x->mid(); if (pos <= mid) { update(zl(x), pos, val); } else { update(zr(x), pos, val); } push_up(x); } 并且补全update函数的重载: void update(int pos, int val) { update(head, pos, val); } 同时,修改xdtr的构造函数,初始线段树的区间为离散化后的范围: xdtr(int size) { h = 0; head = add(1, size); // 离散化后的最大索引是cnt } 然后,在main函数中,创建四个线段树实例时,传入离散化后的size: xdtr w1(cnt), w2(cnt), w3(cnt), w4(cnt); 这样,每个线段树的区间都是离散化后的y坐标范围。 接着,处理cmp1和cmp2的比较函数。用户原来的cmp1按x升序排列,cmp2按x降序排列。这可能正确,因为第一次处理x_i <= a_j的情况,第二次处理x_i >= a_j的情况。 然后,在第一次排序(cmp1)后的循环中: 对于每个元素i: 如果是查询(a[i].z <0),则ans的更新可能正确。例如,w2查询的是0到当前查询的y_j的离散化索引,得到最小值,然后加上a_j + b_j? 但这里需要确保线段树中维护的是正确的值。 在弹弓处理时,w2.update的参数是: w2.update(a[i].y, -a[i].x -a[i].y + a[i].z); 这可能对应情况1的式子中的t_i -x_i -y_i。因此,当查询时,该线段树中的值加上a_j + b_j即得到总时间。 但需要确保线段树中的节点维护的是t_i -x_i -y_i的最小值,当弹弓的x_i <= a_j,并且y_i <= b_j时,取该最小值。 类似的,其他线段树可能维护不同的表达式。 现在,修正后的代码应该能够正确处理这些问题。 总结,用户的错误主要集中在: 1. 运算符错误。 2. 未离散化导致线段树无法处理大范围坐标。 3. 线段树的query和update函数条件判断错误。 4. 线段树的update函数实现不完整。 5. 离散化后的坐标范围未正确设置到线段树中。 修正这些错误后,代码应该能够正确处理问题。</think>根据您提供的代码,以下是主要的错误点及修改后的代码: ### 错误分析: 1. **运算符错误**:在计算初始距离时,误用右移运算符 `>>` 代替减号 `-`。 2. **未离散化坐标**:线段树直接处理大范围坐标(1e9),导致内存和效率问题。 3. **线段树实现错误**: - **查询条件判断错误**:递归进入左右子树的条件不正确。 - **更新函数逻辑错误**:未正确处理位置递归,部分函数未实现。 4. **线段树初始化范围错误**:未根据离散化后的坐标范围初始化。 ### 修改后的代码: ```cpp #include <bits/stdc++.h> using namespace std; const int N = 1e5 + 5; int n, m; struct Node { int x, y, z; } a[2 * N]; vector<int> ys; // 离散化数组 bool cmp1(Node x, Node y) { if (x.x != y.x) return x.x < y.x; return x.z > y.z; // 弹弓在前 } bool cmp2(Node x, Node y) { if (x.x != y.x) return x.x > y.x; return x.z > y.z; // 弹弓在前 } int ans[N]; class xdtr { public: struct TreeNode { int l, r, mi; TreeNode *ls, *rs; int mid() { return (l + r) >> 1; } }; TreeNode *root; int size; xdtr(int s) : size(s) { root = new TreeNode{1, s, (int)1e9, nullptr, nullptr}; } void update(int pos, int val) { _update(root, pos, val); } int query(int l, int r) { return _query(root, l, r); } private: void _update(TreeNode *node, int pos, int val) { if (node->l == node->r) { node->mi = min(node->mi, val); return; } int mid = node->mid(); if (pos <= mid) { if (!node->ls) node->ls = new TreeNode{node->l, mid, (int)1e9, nullptr, nullptr}; _update(node->ls, pos, val); } else { if (!node->rs) node->rs = new TreeNode{mid + 1, node->r, (int)1e9, nullptr, nullptr}; _update(node->rs, pos, val); } node->mi = min(node->ls->mi, node->rs->mi); } int _query(TreeNode *node, int l, int r) { if (l > r) return 1e9; if (node->l >= l && node->r <= r) return node->mi; int mid = node->mid(); int res = 1e9; if (l <= mid && node->ls) res = min(res, _query(node->ls, l, r)); if (r > mid && node->rs) res = min(res, _query(node->rs, l, r)); return res; } }; int main() { ios::sync_with_stdio(false); cin.tie(0); cin >> n >> m; for (int i = 1; i <= n; ++i) { cin >> a[i].x >> a[i].y >> a[i].z; ys.push_back(a[i].y); } for (int i = 1; i <= m; ++i) { cin >> a[n + i].x >> a[n + i].y; a[n + i].z = -i; ans[i] = abs(a[n + i].x - a[n + i].y); ys.push_back(a[n + i].y); } // 离散化 sort(ys.begin(), ys.end()); ys.erase(unique(ys.begin(), ys.end()), ys.end()); int cnt = ys.size(); for (int i = 1; i <= n + m; ++i) { a[i].y = lower_bound(ys.begin(), ys.end(), a[i].y) - ys.begin() + 1; } xdtr w2(cnt), w3(cnt), w1(cnt), w4(cnt); // 第一次扫描:x升序 sort(a + 1, a + 1 + n + m, cmp1); for (int i = 1; i <= n + m; ++i) { if (a[i].z < 0) { // 查询 int j = -a[i].z; int y = a[i].y; ans[j] = min(ans[j], w2.query(1, y) + a[i].x + ys[y - 1]); ans[j] = min(ans[j], w3.query(y, cnt) + a[i].x - ys[y - 1]); } else { // 弹弓 int val1 = a[i].z - a[i].x - ys[a[i].y - 1]; int val2 = a[i].z - a[i].x + ys[a[i].y - 1]; w2.update(a[i].y, val1); w3.update(a[i].y, val2); } } // 第二次扫描:x降序 sort(a + 1, a + 1 + n + m, cmp2); for (int i = 1; i <= n + m; ++i) { if (a[i].z < 0) { // 查询 int j = -a[i].z; int y = a[i].y; ans[j] = min(ans[j], w1.query(1, y) - a[i].x + ys[y - 1]); ans[j] = min(ans[j], w4.query(y, cnt) - a[i].x - ys[y - 1]); } else { // 弹弓 int val1 = a[i].z + a[i].x - ys[a[i].y - 1]; int val2 = a[i].z + a[i].x + ys[a[i].y - 1]; w1.update(a[i].y, val1); w4.update(a[i].y, val2); } } for (int i = 1; i <= m; ++i) { cout << ans[i] << '\n'; } return 0; } ``` ### 修改说明: 1. **离散化处理**:收集所有弹弓和查询的y坐标,离散化为索引。 2. **线段树重构**: - 动态开点避免内存浪费。 - 修正查询和更新逻辑,正确划分区间。 3. **运算符修正**:将`>>`改为`-`,计算初始距离。 4. **排序处理**:确保离线查询时弹弓的正确处理顺序。 5. **表达式修正**:在线段树中维护正确的表达式值,对应四种情况的最小值查询。 此修改后的代码应能正确解决题目问题。
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值