MMSet2(LCA&树的直径)

MMSet2(LCA&树的直径)

思路:树的直径,结论:一棵树的任意点集SSS中距离最远的两个点(类似树的直径)必有一个点是深度最大的点,且树上所有点的到该节点距离最大值的最小值为:该点集的直径除以2向上取整。

因为:所有点的f(u)f(u)f(u)都是与该点集直径d(x,y)d(x,y)d(x,y)到这两个点的距离取mxmxmx,所以要找到最小的值,只需要mx+12\dfrac{mx+1}{2}2mx+1,这样肯定是最小的,其他的都会大于距离的一半。

ep:mx=d(x,y)=5,ep:mx=d(x,y)=5,ep:mx=d(x,y)=5,肯定取path(x,y)path(x,y)path(x,y)路径上中间的点,这样max(dis(x,u),dis(y,u))max(dis(x,u),dis(y,u))max(dis(x,u),dis(y,u))是最小的。

#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const int N=3e5+5,M=1e6+5;
#define mst(a,b) memset(a,b,sizeof a)
#define lx x<<1
#define rx x<<1|1
#define reg register
#define PII pair<int,int>
#define fi first
#define se second
#define pb push_back
#define il inline
template<class T>
inline void read(T &x){ 
	x=0;int w=1;
	char ch=getchar();
	while(ch<'0'||ch>'9') {if(ch=='-') w=-1;ch=getchar();}
	for(;ch>='0'&&ch<='9';ch=getchar())
		x=(x<<3)+(x<<1)+(ch&15);
	x*=w; 
}
struct edge{
	int to,nt;
}e[N<<1];
int n,q,h[N],sz[N],son[N],top[N],cnt,fa[N],dep[N];
int a[M];
il void add(int u,int v){
	e[++cnt].to=v,e[cnt].nt=h[u],h[u]=cnt;
}
void dfs1(int u,int f){ //求size,dep,重儿子son 
	sz[u]=1,fa[u]=f,dep[u]=dep[f]+1;
	for(int i=h[u];i;i=e[i].nt){
		 int v=e[i].to;
		 if(v==f) continue;
		 dfs1(v,u),sz[u]+=sz[v];
		 if(sz[v]>sz[son[u]]) son[u]=v;
	}
}
void dfs2(int u,int tp){ //求链顶top 
	 top[u]=tp;
	 if(son[u]) dfs2(son[u],tp);
	 for(int i=h[u];i;i=e[i].nt){
	 	   int v=e[i].to;
	 	  if(v!=fa[u]&&v!=son[u]) dfs2(v,v);
	 }
} 
int lca(int x,int y){ //树剖LCA
	 while(top[x]!=top[y]){
	 	 if(dep[top[x]]<dep[top[y]]) swap(x,y);
	 	 x=fa[top[x]];
	 }
	 return dep[x]<dep[y]?x:y;
}
il int dis(int x,int y){ //两点距离. 
	return dep[x]+dep[y]-2*dep[lca(x,y)];
}
int main(){
	read(n);	
	for(int i=1,u,v;i<n;i++){
		read(u),read(v); 
		add(u,v),add(v,u);
	}
	dfs1(1,0),dfs2(1,1);
	read(q);
	while(q--){
		int m,u=-1,mx=0;
		read(m);
		for(int i=1;i<=m;i++){
			read(a[i]);
			if(u==-1||dep[a[i]]>dep[u]) u=a[i];
		}
		for(int i=1;i<=m;i++){
			int tmp=dis(u,a[i]);
			if(tmp>mx) mx=tmp;
		}
		printf("%d\n",(mx+1)>>1);
	}
	return 0;
} 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

酷酷的Herio

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值