What Goes Up Must Come Down (树状数组)

What Goes Up Must Come Down (树状数组)

思路:树状数组

题意:求构造一个峰形数组的最小相邻交换操作次数。

一般有相邻交换操作的题目,可以考虑用树状数组做。

交换相邻操作的贡献,转化为每个数被其他数交换的次数。

一个数要么在峰左边,要么在峰右边。

在峰左边则左边的数都比它小,在右边则右边的数都比它小。

因此对于一个数我们需要考虑左边和右边比它大的数个数。

其个数就是该数被其他数交换的次数,哪边小就放在哪边。

因此树状数组左右扫一遍,每次取最小值即可。

#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const int N=1e5+5,M=2e4+5,inf=0x3f3f3f3f,mod=1e9+7;
#define mst(a,b) memset(a,b,sizeof a)
#define lx x<<1
#define rx x<<1|1
#define reg register
#define PII pair<int,int>
#define fi first
#define se second
#define pb push_back
#define il inline
#define lowbit(x) x&(-x)
int n,a[N],c[N],l[N],r[N];
ll ans;
void upd(int x,int v){
	while(x<N){
		c[x]+=v;x+=lowbit(x); 
	}
}
int que(int x){
	int ans=0;
	while(x){
		ans+=c[x],x-=lowbit(x);
	}
	return ans;
}
int main(){
	scanf("%d",&n);
	for(int i=1;i<=n;i++) scanf("%d",&a[i]),l[i]=que(N-1)-que(a[i]),upd(a[i],1);
	mst(c,0);
	for(int i=n;i;i--)  r[i]=que(N-1)-que(a[i]),upd(a[i],1);
	for(int i=1;i<=n;i++) ans+=min(l[i],r[i]);
	printf("%lld\n",ans);
	return 0;	
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

酷酷的Herio

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值