E - Come Back Quickly(最短回路)

本文解析了如何利用Dijkstra算法在无负环的有向图中找到每个节点的最短回路路径,通过实例代码演示了如何避免Floyd-Warshall的误解,并指出其在特定场景下的适用性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

E - Come Back Quickly(最短回路)

题意

​ 求有向带环(无负环)图中每个点的最短回路。


思路

​ 因为没有负环,直接dijkstradijkstradijkstra跑最短路,与一般的最短路的唯一的不同是先将所有与startstartstart点相连的点加入队列,然后再跑,返回的d[st]d[st]d[st]就是最短回路了。

时间复杂度:O(nmlogm)O(nmlogm)O(nmlogm)


代码

#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const int N=2e3+5,M=2e4+5,inf=0x3f3f3f3f,mod=1e9+7;
#define mst(a,b) memset(a,b,sizeof a)
#define PII pair<int,int>
#define fi first
#define se second
#define pb push_back
vector<PII>e[N];
int n,m,d[N];
int dij(int st){	//mlogm 
	mst(d,0x3f);
	priority_queue<PII>q;
	for(auto p:e[st]) if(d[p.fi]>p.se) d[p.fi]=p.se,q.push({-d[p.fi],p.fi});
	while(!q.empty()){
		PII now=q.top();q.pop();
		int u=now.se;
		if(d[u]<-now.fi) continue;
		for(auto p:e[u])
			if(d[p.fi]>d[u]+p.se){
				d[p.fi]=d[u]+p.se;
				q.push({-d[p.fi],p.fi});
			}
	}
	return d[st]==inf?-1:d[st];
}
int main(){	
	scanf("%d%d",&n,&m);for(int i=1,u,v,w;i<=m;i++) scanf("%d%d%d",&u,&v,&w),e[u].pb({v,w});
	for(int i=1;i<=n;i++) printf("%d\n",dij(i)); 
	return 0;
}

做的时候,以为dijkstradijkstradijkstra不能求环的最短路,去floydfloydfloyd强行跑了,允悲。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

酷酷的Herio

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值