动态规划练习——从暴力递归到记忆化搜索到动态规划(卡牌博弈问题)

题目

给定一个整型数组arr,代表数值不同的纸牌排成一条线,玩家A和玩家B依次拿走每张纸牌,规定玩家A先拿,玩家B后拿,但是每个玩家每次只能拿走最左或最右的纸牌,玩家A和玩家B都绝顶聪明。请返回最后获胜者的分数。

暴力尝试请看这篇文章——暴力递归——范围上尝试的模型,博弈论

万能公式!!!

题 -> 找到暴力递归的写法(尝试)-> 分析暴力递归过程中是有重复解的(可变参数不讲究组织就是记忆化搜索,记忆化搜索进行精细化组织就是经典的动态规划)

记忆化搜索和经典动态规划的区别是什么?

如果决策过程中没有枚举行为,就是说任何一个状态都只依赖有限几个子状态,那么这种情况下,记忆化搜索和经典动态规划的时间复杂度没有任何区别。所以,如果在笔试过程中,为了省时间,改出了记忆化搜索后就没必要改动态规划了。

public static int win2(int[] arr) {
   
   
		if (arr == null || arr.length == 0) {
   
   
			return 0;
		}
		int N = arr.length;
		int[][] f = new int[N][N];
		int[][] s = new int[N][N];
		for (int i = 0; i < N; i++) {
   
   
			f[i][i] = arr[i];
		}
		// s[i][i]=0; 数组默认初始化就为0
		for (int i = 1; i < N; i++) {
   
   
			int L = 0;
			int R = i;
			while (R < N && L < N) {
   
   
				f[L][R] = Math.max(arr[L] + s[L + 1][R], arr[R] + s[L][R - 1]);
				s[L][R] = Math.min(f[L + 1][R], f[L][R - 1]);
				L++;
				R++;
			}
		}
		return Math.max(f[0][N - 
评论 13
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

爱敲代码的Harrison

从来无所求,所得皆惊喜。

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值