并查集练习——岛屿数量ii

本文探讨了如何利用 Union Find 数据结构解决LeetCode岛屿数量II问题,介绍了两种优化方法:经典Union-Find1和更高效的Union-Find2,以及它们在不同场景下的时间复杂度优化。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

力扣原题链接:岛屿数量ii

假设你设计一个游戏,用一个 m 行 n 列的 2D 网格来存储你的游戏地图。

起始的时候,每个格子的地形都被默认标记为「水」。
我们可以通过使用 addLand 进行操作,将位置 (row, col) 的「水」变成「陆地」。

你将会被给定一个列表,来记录所有需要被操作的位置,然后你需要返回计算出来 每次 addLand 操作后岛屿的数量。

注意:一个岛的定义是被「水」包围的「陆地」,通过水平方向或者垂直方向上相邻的陆地连接而成。
你可以假设地图网格的四边均被无边无际的「水」所包围。

请仔细阅读下方示例与解析,更加深入了解岛屿的判定。

示例:
输入: m = 3, n = 3, 
	positions = [[0,0], [0,1], [1,2], [2,1]]
输出: [1,1,2,3]
解析:
起初,二维网格 grid 被全部注入「水」。(0 代表「水」,1 代表「陆地」)
0 0 0
0 0 0
0 0 0

操作 #1addLand(0, 0) 将 grid[0][0] 的水变为陆地。
1 0 0
0 0 0   Number of islands = 1
0 0 0

操作 #2addLand(0, 1) 将 grid[0][1] 的水变为陆地。
1 1 0
0 0 0   岛屿的数量为 1
0 0 0

操作 #3addLand(1, 2) 将 grid[1][2] 的水变为陆地。
1 1 0
0 0 1   岛屿的数量为 2
0 0 0

操作 #4addLand(2, 1) 将 grid[2][1] 的水变为陆地。
1 1 0
0 0 1   岛屿的数量为 3
0 1 0

拓展:
你是否能在 O(k log mn) 的时间复杂度程度内完成每次的计算?
(k 表示 positions 的长度)

package class15;

import java.util.ArrayList;
import java.util.HashMap;
import java.util.List;

// 本题为leetcode原题
// 测试链接:https://leetcode.com/problems/number-of-islands-ii/
// 所有方法都可以直接通过
public class Code03_NumberOfIslandsII {
   
   

	public static List<Integer> numIslands21(int m, int n, int[][
### 使用并查集算法计算岛屿数量 #### 1. 基本概念 并查集是一种用于处理动态连通性的数据结构,能够高效地支持集合的合并操作以及查询两个元素是否属于同一个集合的操作。在解决岛屿数量问题时,可以将每个格子看作一个节点,如果某个格子是陆地(`'1'`),则将其与其他相邻的陆地格子通过并查集连接起来。 #### 2. 初始化并查集 为了初始化并查集,需要创建一个数组 `head` 来存储每个节点的父亲节点,并设置初始状态为每个节点都是自己的父亲节点[^1]。同时还需要维护一个数组 `level` 记录树的高度以便优化合并过程。 ```cpp void create(int head[], int level[], int n) { for (int i = 0; i < n; i++) { head[i] = i; level[i] = 1; } } ``` #### 3. 查找函数 查找函数的作用是找到当前节点所属集合的根节点。在此过程中还可以应用路径压缩技术,即将沿途经过的所有节点直接挂载到根节点下,从而加速后续查找操作。 ```cpp int find(int x, int head[]) { if (x == head[x]) return x; return head[x] = find(head[x], head); } ``` #### 4. 合并函数 当发现两个不同的陆地格子之间存在邻接关系时,就需要调用合并函数将它们所在的集合合并在一起。这里采用按秩合并策略,优先把较矮的小树接到大树下面以保持整体平衡性。 ```cpp void merge(int level[], int head[], int x, int y) { x = find(x, head); y = find(y, head); if (x == y) return; if (level[x] <= level[y]) { head[x] = y; } else { head[y] = x; } if (level[x] == level[y]) level[y]++; } ``` #### 5. 主体逻辑 对于输入矩阵中的每一个位置 `(i, j)` ,如果是陆地 `'1'` 则尝试与其上下左右四个方向上的邻居进行判断是否有相连的情况;如果有,则执行相应的合并动作。最终统计独立集合数目即得到岛屿总数。 ```cpp class Solution { public: int numIslands(vector<vector<char>>& grid) { if (grid.empty()) return 0; int m = grid.size(); int n = grid[0].size(); vector<int> parent(m * n, -1); auto isValid = [&](int r, int c) -> bool { return r >= 0 && r < m && c >= 0 && c < n && grid[r][c] == '1'; }; function<int(int)> find_set = [&](int x) -> int { if (parent[x] != x) { parent[x] = find_set(parent[x]); } return parent[x]; }; function<void(int, int)> union_set = [&](int x, int y) -> void { int fx = find_set(x), fy = find_set(y); if (fx != fy) { parent[fy] = fx; } }; // Initialize disjoint sets. for (int i = 0; i < m; ++i) { for (int j = 0; j < n; ++j) { if (grid[i][j] == '1') { parent[i * n + j] = i * n + j; } } } // Union adjacent lands. for (int i = 0; i < m; ++i) { for (int j = 0; j < n; ++j) { if (grid[i][j] == '1') { if (isValid(i + 1, j)) union_set(i * n + j, (i + 1) * n + j); if (isValid(i, j + 1)) union_set(i * n + j, i * n + j + 1); } } } unordered_set<int> islands; for (int i = 0; i < m; ++i) { for (int j = 0; j < n; ++j) { if (grid[i][j] == '1') { islands.insert(find_set(i * n + j)); } } } return islands.size(); } }; ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

爱敲代码的Harrison

从来无所求,所得皆惊喜。

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值