AI大模型:(二)2.2 分词器Tokenizer

       

目录

1.分词技术的发展

2.分词器原理

2.1.基于词分词

2.2.基于字符分词

2.3.基于子词分词

3.手搓Byte-Pair Encoding (BPE)分词及训练

3.1.Byte-Pair Encoding (BPE)分词原理

3.2.手搓Byte-Pair Encoding (BPE)分词器

4.如何选择已有的分词器

1. 常见子词分词器及特点

2. 选择关键因素

(1) 语言特性

(2) 数据规模

(3) 任务需求

(4) 技术限制

5.如何训练已有的分词器

场景1:中文NLP

场景2:多语言模型

场景3:低资源语言


       我们上一章简单介绍了分词器,它是大语言模型的基础组件,是大模型必不可少的。本篇我们详细介绍下分词器原理、如何选择分词器、以及如何训练分词器。       

1.分词技术的发展

        2013年Word2Vec出来之前是统计学习加特征工程的时代,搜索引擎、淘宝等等互联网软件为了分析和方便搜索就使用了统计学习加特征工程,使用决策书、SVM向量机等机器学习算法,导致词表非常的大,而且无法理解上下文语义,情感分析只靠关键词评判,很容易误判。直到2013年Google团队推出了Word2Vec,Word2Vec开启了NLP预训练时代。Word2Vec将分词进行了向量化,就是以一种数学的可计算方式表达了出来。Word2Vec是以一种神经网络算法使用大规模文本以窗口滑动的形式,每次拿出五个词,给出前两个和后两个预测中间的字或者给出中间的字预测前边、后边的两个词。后来又出了循环神经网络,它可以记住上下文了,但是它又不知道哪些词重要不重要。随之而来又有了LSTM长短记忆神经网络,它引入了门控机制,

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

hay_lee

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值