AI大模型:(二)1.4 Qwen2.5-Omni全模态大模型部署

       

目录

1.部署要求 

2.全模态模型介绍

3.环境准备

4.模型下载

 5.推理

 6.web多模态聊天推理

6.1.安装依赖

6.2.使用量化加载

6.3.运行推理


        3 月 27 日凌晨,阿里通义千问团队发布 Qwen2.5-Omni。这是 Qwen 系列中全新的旗舰级多模态大模型,专为全面的多模式感知设计,可以无缝处理包括文本、图像、音频和视频的各种输入,同时支持流式的文本生成和自然语音合成输出。从此以后,你可以像打电话或进行视频通话一样与 Qwen 聊天了!

1.部署要求 

最小GPU显存要求:

Precision 15(s) Video 30(s) Video 60(s) Video
FP32 93.56 GB Not Recommend Not Recommend
BF16 31.11 GB 41.85 GB 60.19 GB
### Qwen2.5-Omni 版本介绍 Qwen2.5-Omni 是阿里巴巴推出的一款具有突破性的多模态大模型,其设计目标是实现跨模态的理解与生成能力。该版本的核心特点是能够处理多种类型的输入数据(如视频、图像、音频和文本),并具备生成相应模态输出的能力[^3]。 #### 功能特点 1. **多模态融合** Qwen2.5-Omni 支持对不同形式的数据进行统一建模,包括但不限于视频、图片、语音以及文字等多种模态的信息。这种特性使得模型可以更面地理解复杂场景中的信息,并提供更加多样化的交互方式。 2. **强大的生成能力** 不仅限于接收多模态输入,Qwen2.5-Omni 还能够在多个维度上生成高质量的内容,比如生成自然流畅的文字描述或者合成逼真的语音片段等。 3. **高效训练架构** 基于先进的预训练技术,Qwen2.5-Omni 实现了高效的参数规模扩展,在保持高性能的同时降低了计算资源消耗。这一进步得益于阿里云团队在大规模分布式训练方面的持续优化工作[^1]。 4. **开放共享精神** 阿里巴巴秉承开源理念发布了 Qwen2.5-Omni 的部分权重文件及相关文档资料供研究者下载学习使用 (具体可参见 GitHub 页面)[^2] 。此举旨在促进学术界和技术社区共同探索未来人工智能发展的无限可能。 以下是基于上述功能特性的 Python 示例代码展示如何加载并调用此类大型语言/视觉混合型预训练模型: ```python from transformers import AutoTokenizer, AutoModelForCausalLM tokenizer = AutoTokenizer.from_pretrained("qwen/Qwen2.5-Omni") model = AutoModelForCausalLM.from_pretrained("qwen/Qwen2.5-Omni") input_text = "解释一下什么是量子计算机?" inputs = tokenizer(input_text, return_tensors="pt") outputs = model.generate(**inputs) print(tokenizer.decode(outputs[0], skip_special_tokens=True)) ``` 通过以上脚本即可轻松体验到这款先进 AI 工具所带来的便利之处!
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

hay_lee

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值