Adaptive Bit Rate Control in Semantic Communication With Incremental Knowledge-Based HARQ 自适应比特率控制

论文原文:

arxiv.org/pdf/2203.06634

1. 背景

        传统通信以比特精确传输为目标,而语义通信追求传递信息的语义准确性。随着自然语言处理(NLP)和深度学习的发展,语义通信成为一个重要研究方向。而现有语义通信方案大多使用固定比特率编码,无法根据信道状况和语义复杂度灵活调整传输率,导致资源浪费或传输失败。

        论文探索自适应比特率在语义通信中的实现,使传输比特数量与信道质量及信息复杂度相匹配。在传输失败时,通过增量知识(Incremental Knowledge, IK)进一步提高通信效率。

2. 系统设计

        采用语义IK-HARQ:有两种不同的实现方式,

  • 多解码器方案:多个解码器分别负责不同传输批次的数据,并通过整合多次传输的增量信息提升解码效果。
  • 单解码器方案:通过单一解码器处理所有传输批次的数据,减少系统复杂度。

        语义编码与自适应比特率控制:利用Transformer架构作为语义编码器,能够提取输入信息的语义特征。提出基于策略网络的自适应比特率控制,使传输比特率根据信道状态和语义内容优化。

        输入句子 s 后,编码器将句子转换为语义向量,并将其编码为比特流 L×B 的形式。Policy Network(策略网络)根据输入的句子语义特征和信道的信噪比(SNR),动态选择适当的比特长度对应不同的传输方案,策略网络可以选择 L×B1​、L×B2​ 或 L×B3 等长度(其中 B1<B2<B3​)。选择标签如0,1,0表示不同的比特长度。编码后的比特流分为不同比特率的块,如 L×B1、L×B2。根据策略网络的选择,将特定长度的比特流通过信道发送,经过信道传输时,可能会有噪声干扰,影响传输的数据。在解码过程中,传输的数据如果不足以满足解码需求,则会填充0,将其扩展为固定的输入长度 L×B,确保与解码器的输入格式一致。解码器接收到填充后的比特流,并将其转换回原始句子 \hat{s}

        下图是策略网络的结构图:

        所提出的语义通信系统的完整框架如图:

          输入的句子 s 会经过嵌入层(Embedding layer),将单词映射为向量形式,生成适合语义分析的词嵌入矩阵。使用类似于 Transformer 或深度学习的编码器(Encoder),对嵌入后的语义向量进行进一步的编码,提取语义特征。在编码器之后加入的SNR-adaptive denoiser(SNR自适应去噪模块)会利用信噪比(SNR)信息,优化语义向量以减少噪声干扰,这种模块特别适用于传输过程中信道质量已知的情况,能够根据信道的噪声水平进行去噪处理。

        语义向量经过Quantization(量化模块),将连续的语义向量表示为离散的比特流,以便在信道上传输,这是将神经网络编码的语义信息转化为可传输的数字信号的关键步骤。比特流经过无线信道传输,在信道过程中,数据可能受到噪声、干扰或丢包的影响。接收端的Dequantization(反量化模块)将接收到的比特流还原为语义向量,为进一步解码做准备。

        在解码之前,SNR-adaptive denoiser(SNR自适应去噪模块)再次利用信道的SNR信息进行去噪,进一步提升解码的准确性。Self-adaptive denoiser(自适应去噪模块)使用自注意力机制分析上下文关系,根据语义信息对数据进行自适应去噪,而不依赖于SNR信息,这种模块适用于无法准确获取SNR信息的情况,通过上下文权重调整实现自我去噪。最终的Decoder(解码器)将去噪后的语义向量解码为句子 \hat{s} ,尽可能还原原始句子 s。

        SNR自适应去噪模块通过结合信道的信噪比信息,使系统能够根据当前信道条件动态调整特征的缩放和校正。图中包含多个 MLP(Multi-Layer Perceptron,多层感知机) 模块,它们用于提取特征并生成缩放和偏移因子。第一个 MLP将输入向量转化为与SNR相关的特征。第二个 MLP:接受由 SNR值 和特征向量拼接而成的输入,用于生成缩放因子 L×1第三个 MLP:生成偏移因子 L×1 ,用于进一步调整去噪效果。信噪比 SNR 被作为输入信息,与经过 MLP 处理后的特征向量拼接形成大小为 (L+1)×1 的新向量。这一步的目的是让系统在生成缩放和偏移因子时充分考虑当前信道的质量。一个大小为 L×1  的向量,表示每个词的缩放系数,用于放大或减小对应语义特征的强度。同样为 L×1 的向量,用于对语义特征进行适当的调整和校正。

        自适应去噪模块如下:

        我们将上述提出的3种方案(多解码器的IK-HARQ,自适应比特率控制SNR自适应去噪)进行集成,建立了具有自适应语义码率控制和IK - HARQ的集成JSCC方案。

3. 实验设置与结果分析

        数据集使用欧洲议会标准语料库(Europarl)进行训练与测试。模拟加性高斯白噪声(AWGN)信道,SNR范围在 -2dB 至 6dB。采用BLEU(双语评估替代)分数衡量语义传输的准确性。

结果分析

  • 传输性能:相比传统编码方案(如LDPC、RS),语义通信系统在低SNR下表现更好,且使用更少的比特完成传输。
  • IK-HARQ效果:多次重传能够显著提高传输准确性,尤其是在低SNR情况下。
  • 自适应比特率控制:通过策略网络选择不同的比特率,在确保传输准确性的同时节省了传输资源。
  • 去噪模块性能:加入自适应去噪模块后,系统在低SNR下的表现得到进一步提升。

复杂度分析

  • 计算复杂度:IK-HARQ与基本语义通信系统的复杂度相同,为O(L²·D),其中L为句子长度,D为嵌入维度。
  • 模块路径长度:自适应去噪模块的路径长度较短,但计算复杂度较高。

        本文提出了一种集成自适应比特率控制和IK-HARQ的端到端语义通信方案。通过引入去噪模块和策略网络,该方案在不同信道条件下实现了高效、可靠的语义传输。未来可以进一步研究如何在不同任务和场景中优化语义通信系统,并探索语义传输错误的检测与修复方法。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值