Google ADK+DeepSeek极速构建AI Agent

Google ADK + DeepSeek 快速构建 Agent 指南

1. 技术组件解析
  • Google ADK:Android 开发工具包,提供移动端 Agent 的运行环境
  • DeepSeek:大语言模型(LLM)服务,提供自然语言理解与生成能力
  • 核心架构
    Agent=ADK(移动端)⊕DeepSeek(云服务) \text{Agent} = \text{ADK(移动端)} \oplus \text{DeepSeek(云服务)} Agent=ADK(移动端)DeepSeek(云服务)
2. 构建步骤

步骤1:环境准备

# Android Studio 配置
implementation 'com.google.android.gms:play-services-base:18.3.0'
implementation 'com.squareup.retrofit2:retrofit:2.9.0'  # API 通信

步骤2:DeepSeek 接入

import requests

def query_deepseek(prompt):
    API_KEY = "YOUR_DEEPSEEK_KEY"
    headers = {"Authorization": f"Bearer {API_KEY}"}
    payload = {
        "model": "deepseek-chat",
        "messages": [{"role": "user", "content": prompt}]
    }
    response = requests.post("https://api.deepseek.com/v1/chat", json=payload, headers=headers)
    return response.json()['choices'][0]['message']['content']

步骤3:ADK Agent 实现

// Android 端 Agent 核心类
public class AIAgent extends Service {
    private final IBinder binder = new LocalBinder();
    
    public class LocalBinder extends Binder {
        AIAgent getService() { return AIAgent.this; }
    }

    public String processQuery(String userInput) {
        // 调用 DeepSeek API
        String response = NetworkUtil.queryAI(userInput); 
        return parseResponse(response);
    }
    
    private String parseResponse(String json) {
        // 解析 JSON 响应
        try {
            JSONObject obj = new JSONObject(json);
            return obj.getString("content");
        } catch (JSONException e) {
            return "处理响应时出错";
        }
    }
}

步骤4:交互界面集成

<!-- activity_main.xml -->
<EditText
    android:id="@+id/inputField"
    android:hint="请输入问题"/>

<Button
    android:id="@+id/submitBtn"
    android:text="提问"/>

<TextView
    android:id="@+id/responseView"
    android:textSize="18sp"/>
3. 功能扩展方案
  1. 上下文记忆
    在 DeepSeek 请求中添加历史对话:

    {
      "messages": [
        {"role": "system", "content": "你是有帮助的助手"},
        {"role": "user", "content": "昨天说的会议时间"},
        {"role": "assistant", "content": "今天下午3点"},
        {"role": "user", "content": "改成几点?"} 
      ]
    }
    
  2. 本地能力增强

    // 设备功能调用示例
    public void setReminder(String time, String event) {
        Intent intent = new Intent(AlarmClock.ACTION_SET_ALARM);
        intent.putExtra(AlarmClock.EXTRA_HOUR, parseHour(time));
        intent.putExtra(AlarmClock.EXTRA_MESSAGE, event);
        startActivity(intent);
    }
    
  3. 混合决策流程
    响应决策={本地执行if θ∈Ωlocal云端处理otherwise \text{响应决策} = \begin{cases} \text{本地执行} & \text{if } \theta \in \Omega_{\text{local}} \\ \text{云端处理} & \text{otherwise} \end{cases} 响应决策={本地执行云端处理if θΩlocalotherwise
    其中 Ωlocal\Omega_{\text{local}}Ωlocal 为本地能力集合

4. 优化建议
  • 性能:使用 gRPC 替代 REST 提升通信效率
  • 安全:实现 OAuth 2.0 身份验证流程
  • 成本控制
    # 深度优化提示词
    optimized_prompt = f"""请用不超过50字回答:
    {original_question} [附加要求:避免冗余描述]"""
    
5. 典型应用场景
  1. 移动端智能个人助理
  2. 物联网设备控制中枢
  3. 实时翻译工具
  4. 企业级知识问答系统

部署提示:测试阶段可使用 Android 模拟器 + ngrok 实现本地服务穿透,正式部署推荐 Google Cloud Run 托管后端服务。

<think>我们之前讨论了在ADK框架中如何通过异步yield实现MCP工具的流式数据返回,以及Agent如何实时处理这些数据。现在用户的新问题是关于`parallel_agent`的用法以及如何与MCP工具配合实现异步数据更新。根据用户的问题和之前的上下文,我们需要重点解释:1.什么是`parallel_agent`?它在ADK中扮演什么角色?2.如何将MCP工具与`parallel_agent`结合使用?3.如何利用异步yield机制在`parallel_agent`中实现实时数据更新?###解决方案####1.ParallelAgent概述在ADK框架中,`ParallelAgent`是一种特殊类型的Agent,设计用于并行处理多个任务。它能够同时运行多个工具调用或处理多个用户请求,特别适合需要高吞吐量和实时数据处理的场景[^1]。```pythonfromgoogle.adk.agentsimportParallelAgent```####2.创建支持异步yield的MCP工具与之前类似,我们定义一个MCP工具,该工具使用异步生成器(yield)来返回流式数据。例如,模拟一个实时股票数据源:```pythonimportasynciofromadk.mcpimportToolclassStockDataTool(Tool):asyncdef__call__(self,symbol:str):"""实时股票数据流"""#模拟实时数据(实际中可能连接WebSocket)foriinrange(5):#生成数据块,格式为字符串data_chunk=f"{symbol}_price_{i}:{100+i*0.5}"yielddata_chunkawaitasyncio.sleep(0.5)#模拟延迟```####3.在ParallelAgent中集成工具并处理异步流`ParallelAgent`通过异步任务管理机制处理多个数据流。关键步骤:-注册工具-使用`asyncio.gather`并发处理多个工具调用-实时收集每个工具产生的数据块并分发```pythonfromgoogle.adk.agentsimportParallelAgentfromadk.artifactsimportTextArtifactclassStockMonitorAgent(ParallelAgent):tools=[StockDataTool()]#注册工具asyncdefrun(self,session):#用户请求多个股票symbols=["AAPL","GOOGL","MSFT"]#创建异步任务列表tasks=[]forsymbolinsymbols:#对每个股票启动一个异步任务调用工具task=self._process_stock(session,symbol)tasks.append(task)#并行执行所有任务awaitasyncio.gather(*tasks)asyncdef_process_stock(self,session,symbol):"""处理单个股票的数据流"""#调用工具并异步迭代数据流asyncfordata_chunkinself.tools.StockDataTool(symbol=symbol):#实时创建Artifact并发送artifact=TextArtifact(f"{symbol}:{data_chunk}")session.add_artifact(artifact)#推送到客户端#可选:记录日志或触发事件self.logger.info(f"更新{symbol}数据")```####4.客户端实时展示客户端通过WebSocket接收多个股票的并行数据流:```javascript//伪代码示例constsocket=newWebSocket("agent_session_url");socket.onmessage=(event)=>{constartifact=JSON.parse(event.data);console.log(`实时数据:${artifact.content}`);//更新UI:每个股票单独显示};```###关键技术点-**并行性**:`ParallelAgent`利用`asyncio.gather`实现真正的并发[^2]。-**异步数据流**:每个工具调用独立产生数据流,互不阻塞。-**动态Artifact分发**:每个数据块都通过会话实时推送到客户端。###应用场景1.多资产金融监控面板2.物联网多传感器数据采集3.并发用户对话系统###注意事项-资源管理:并行任务可能消耗大量资源,需监控。-错误处理:每个任务应有独立错误处理(示例中未展示,实际需添加try/except)。-流量控制:当数据流过多时,考虑使用背压机制。###相关问题1.如何在`ParallelAgent`中实现任务优先级调度?2.当某个工具调用失败时,如何保证其他任务不受影响?3.ADK框架提供了哪些工具来监控并行任务的性能?</think>### Google ADK ParallelAgent 使用指南与 MCP 工具异步数据更新 #### 1. ParallelAgent 核心概念 在 ADK 框架中,`ParallelAgent` 是一种特殊类型的代理,专为**并行处理多个异步任务**设计。与标准 Agent 不同,它能够同时管理多个工具调用,并通过协程机制高效处理异步数据流[^2]。其核心特性包括: - **并行任务调度**:使用 `asyncio.gather()` 管理并发操作 - **流式数据管道**:通过异步迭代器(`async for`)处理 MCP 工具的 `yield` 输出 - **实时状态同步**:内置会话级数据同步机制 #### 2. MCP 工具异步 yield 配置 定义支持流式响应的 MCP 工具: ```python from adk.mcp import Tool import asyncio class AsyncDataTool(Tool): async def __call__(self, params: dict): """实时数据流生成器 (每0.5秒更新)""" for i in range(1, 6): # 生成数据块 (实际应用替换为API/数据库调用) yield { "progress": f"{i*20}%", "data_chunk": f"结果片段_{i}", "timestamp": asyncio.get_event_loop().time() } await asyncio.sleep(0.5) # 模拟处理延迟 ``` #### 3. ParallelAgent 集成异步 MCP 工具 创建并行代理并处理流式数据: ```python from google.adk.agents import ParallelAgent from adk.artifacts import JsonArtifact class DataProcessingAgent(ParallelAgent): tools = [AsyncDataTool()] # 注册异步工具 async def run(self, session): # 启动多个并行数据流 task1 = self._process_stream("query_A") task2 = self._process_stream("query_B") # 并行执行任务 await asyncio.gather(task1, task2) async def _process_stream(self, query: str): """处理单个异步数据流""" async for chunk in self.tools.AsyncDataTool( params={"query": query} ): # 实时更新数据到会话 artifact = JsonArtifact(chunk) session.add_artifact(artifact) # 触发客户端更新事件 self.emit_event( event_type="data_update", payload={ "stream_id": query, "data": chunk, "agent": self.name } ) ``` #### 4. 实时数据更新机制 | 组件 | 功能 | 实时性保证 | |-------|-------|-------------| | `async for` | 异步迭代器 | 即时消费 yield 数据 | | `session.add_artifact()` | 数据注入 | 毫秒级推送至客户端 | | `emit_event()` | 事件通知 | 跨Agent实时同步 | | MCP 协议 | 通信层 | 双向数据管道 | #### 5. 客户端交互实现 前端通过 WebSocket 接收实时更新: ```javascript // 连接ADK会话 const socket = new WebSocket("wss://adk-gateway/session_id"); socket.onmessage = (event) => { const msg = JSON.parse(event.data); if(msg.type === "artifact") { // 更新UI数据块 updateDataTable(msg.content); } else if(msg.type === "event" && msg.event === "data_update") { // 实时进度条更新 updateProgressBar(msg.payload.stream_id, msg.payload.data.progress); } }; ``` #### 6. 性能优化技巧 1. **背压控制** 添加流量控制防止数据积压: ```python async for chunk in stream: if session.pending_artifacts > 10: # 控制队列深度 await asyncio.sleep(0.1) ``` 2. **错误隔离** 使用独立错误处理保证单流失败不影响整体: ```python async def _safe_stream(self, query): try: async for chunk in self.tools.AsyncDataTool(...): ... except Exception as e: self.log_error(f"Stream {query} failed: {e}") ``` 3. **动态优先级** 基于数据重要性调整更新频率: ```python update_interval = 0.1 if chunk["priority"] == "HIGH" else 0.5 ``` ### 典型应用场景 1. **实时监控系统**:并行处理 1000+ 物联网设备数据流 2. **金融交易引擎**:同时监控多个市场数据源 3. **AI 推理流水线**:并行处理多个 LLM 生成任务 --- ### 相关问题 1. 如何在 ParallelAgent 中实现不同数据流的优先级调度? 2. MCP 协议的流控制机制如何防止数据过载? 3. 异步工具执行过程中如何实现断点续传? 4. ParallelAgent 与标准 Agent 在资源消耗上有何差异?
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

虎王科技

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值