Google ADK + DeepSeek 快速构建 Agent 指南
1. 技术组件解析
- Google ADK:Android 开发工具包,提供移动端 Agent 的运行环境
- DeepSeek:大语言模型(LLM)服务,提供自然语言理解与生成能力
- 核心架构:
Agent=ADK(移动端)⊕DeepSeek(云服务) \text{Agent} = \text{ADK(移动端)} \oplus \text{DeepSeek(云服务)} Agent=ADK(移动端)⊕DeepSeek(云服务)
2. 构建步骤
步骤1:环境准备
# Android Studio 配置
implementation 'com.google.android.gms:play-services-base:18.3.0'
implementation 'com.squareup.retrofit2:retrofit:2.9.0' # API 通信
步骤2:DeepSeek 接入
import requests
def query_deepseek(prompt):
API_KEY = "YOUR_DEEPSEEK_KEY"
headers = {"Authorization": f"Bearer {API_KEY}"}
payload = {
"model": "deepseek-chat",
"messages": [{"role": "user", "content": prompt}]
}
response = requests.post("https://api.deepseek.com/v1/chat", json=payload, headers=headers)
return response.json()['choices'][0]['message']['content']
步骤3:ADK Agent 实现
// Android 端 Agent 核心类
public class AIAgent extends Service {
private final IBinder binder = new LocalBinder();
public class LocalBinder extends Binder {
AIAgent getService() { return AIAgent.this; }
}
public String processQuery(String userInput) {
// 调用 DeepSeek API
String response = NetworkUtil.queryAI(userInput);
return parseResponse(response);
}
private String parseResponse(String json) {
// 解析 JSON 响应
try {
JSONObject obj = new JSONObject(json);
return obj.getString("content");
} catch (JSONException e) {
return "处理响应时出错";
}
}
}
步骤4:交互界面集成
<!-- activity_main.xml -->
<EditText
android:id="@+id/inputField"
android:hint="请输入问题"/>
<Button
android:id="@+id/submitBtn"
android:text="提问"/>
<TextView
android:id="@+id/responseView"
android:textSize="18sp"/>
3. 功能扩展方案
-
上下文记忆
在 DeepSeek 请求中添加历史对话:{ "messages": [ {"role": "system", "content": "你是有帮助的助手"}, {"role": "user", "content": "昨天说的会议时间"}, {"role": "assistant", "content": "今天下午3点"}, {"role": "user", "content": "改成几点?"} ] }
-
本地能力增强
// 设备功能调用示例 public void setReminder(String time, String event) { Intent intent = new Intent(AlarmClock.ACTION_SET_ALARM); intent.putExtra(AlarmClock.EXTRA_HOUR, parseHour(time)); intent.putExtra(AlarmClock.EXTRA_MESSAGE, event); startActivity(intent); }
-
混合决策流程
响应决策={本地执行if θ∈Ωlocal云端处理otherwise \text{响应决策} = \begin{cases} \text{本地执行} & \text{if } \theta \in \Omega_{\text{local}} \\ \text{云端处理} & \text{otherwise} \end{cases} 响应决策={本地执行云端处理if θ∈Ωlocalotherwise
其中 Ωlocal\Omega_{\text{local}}Ωlocal 为本地能力集合
4. 优化建议
- 性能:使用 gRPC 替代 REST 提升通信效率
- 安全:实现 OAuth 2.0 身份验证流程
- 成本控制:
# 深度优化提示词 optimized_prompt = f"""请用不超过50字回答: {original_question} [附加要求:避免冗余描述]"""
5. 典型应用场景
- 移动端智能个人助理
- 物联网设备控制中枢
- 实时翻译工具
- 企业级知识问答系统
部署提示:测试阶段可使用 Android 模拟器 + ngrok 实现本地服务穿透,正式部署推荐 Google Cloud Run 托管后端服务。