搭建prometheus+grafana监控系统抓取Linux主机系统资源数据

Prometheus 和 Grafana 是两个非常流行的开源工具,通常结合使用来实现监控、可视化和告警功能。它们在现代 DevOps 和云原生环境中被广泛使用。

1. Prometheus

  • 定义:Prometheus 是一个开源的系统监控和告警工具包,最初由 SoundCloud 开发,现在是 CNCF(云原生计算基金会)的毕业项目。

  • 核心功能

    • 数据采集:通过拉取(Pull)方式从目标服务(如应用程序、服务器、数据库等)收集指标数据。

    • 数据存储:将采集到的时序数据(Time Series Data)存储在本地或远程存储中。

    • 查询语言:提供强大的查询语言 PromQL,用于分析和查询监控数据。

    • 告警功能:支持基于规则的告警,可以通过 Alertmanager 发送告警通知(如邮件、Slack、PagerDuty 等)。

  • 特点

    • 多维数据模型(通过标签区分不同的指标)。

    • 支持服务发现,动态监控目标。

    • 高性能,适合大规模监控。

  • 适用场景

    • 监控 Kubernetes 集群。

    • 监控微服务架构。

    • 监控基础设施(如服务器、数据库、网络设备等)。

2. Grafana

  • 定义:Grafana 是一个开源的指标分析和可视化工具,支持多种数据源(如 Prometheus、InfluxDB、Elasticsearch 等)。

  • 核心功能

    • 数据可视化:通过丰富的图表(如折线图、柱状图、仪表盘等)展示监控数据。

    • 多数据源支持:支持 Prometheus、InfluxDB、MySQL、Elasticsearch 等多种数据源。

    • 仪表盘:用户可以创建和共享自定义的监控仪表盘。

    • 告警功能:Grafana 也支持告警功能,可以根据指标设置告警规则并发送通知。

  • 特点

    • 界面美观,交互性强。

    • 支持插件扩展,功能丰富。

    • 社区活跃,有大量现成的仪表盘模板。

  • 适用场景

    • 可视化 Prometheus 的监控数据。

    • 分析和展示时序数据。

    • 创建自定义的监控和运维仪表盘。

3. Prometheus + Grafana 的结合

  • Prometheus 负责数据采集和存储,而 Grafana 负责数据的可视化和展示。

  • 典型工作流程

    1. Prometheus 从目标服务(如应用程序、服务器)拉取指标数据。

    2. Prometheus 将数据存储在其时序数据库中。

    3. Grafana 连接到 Prometheus 数据源,查询数据并展示在仪表盘上。

### RT-DETRv3 网络结构分析 RT-DETRv3 是一种基于 Transformer 的实时端到端目标检测算法,其核心在于通过引入分层密集正监督方法以及一系列创新性的训练策略,解决了传统 DETR 模型收敛慢和解码器训练不足的问题。以下是 RT-DETRv3 的主要网络结构特点: #### 1. **基于 CNN 的辅助分支** 为了增强编码器的特征表示能力,RT-DETRv3 引入了一个基于卷积神经网络 (CNN) 的辅助分支[^3]。这一分支提供了密集的监督信号,能够与原始解码器协同工作,从而提升整体性能。 ```python class AuxiliaryBranch(nn.Module): def __init__(self, in_channels, out_channels): super(AuxiliaryBranch, self).__init__() self.conv = nn.Conv2d(in_channels, out_channels, kernel_size=3, padding=1) self.bn = nn.BatchNorm2d(out_channels) def forward(self, x): return F.relu(self.bn(self.conv(x))) ``` 此部分的设计灵感来源于传统的 CNN 架构,例如 YOLO 系列中的 CSPNet 和 PAN 结构[^2],这些技术被用来优化特征提取效率并减少计算开销。 --- #### 2. **自注意力扰动学习策略** 为解决解码器训练不足的问题,RT-DETRv3 提出了一种名为 *self-att 扰动* 的新学习策略。这种策略通过对多个查询组中阳性样本的标签分配进行多样化处理,有效增加了阳例的数量,进而提高了模型的学习能力和泛化性能。 具体实现方式是在训练过程中动态调整注意力权重分布,确保更多的高质量查询可以与真实标注 (Ground Truth) 进行匹配。 --- #### 3. **共享权重解编码器分支** 除了上述改进外,RT-DETRv3 还引入了一个共享权重的解编码器分支,专门用于提供密集的正向监督信号。这一设计不仅简化了模型架构,还显著降低了参数量和推理时间,使其更适合实时应用需求。 ```python class SharedDecoderEncoder(nn.Module): def __init__(self, d_model, nhead, num_layers): super(SharedDecoderEncoder, self).__init__() decoder_layer = nn.TransformerDecoderLayer(d_model=d_model, nhead=nhead) self.decoder = nn.TransformerDecoder(decoder_layer, num_layers=num_layers) def forward(self, tgt, memory): return self.decoder(tgt=tgt, memory=memory) ``` 通过这种方式,RT-DETRv3 实现了高效的目标检测流程,在保持高精度的同时大幅缩短了推理延迟。 --- #### 4. **与其他模型的关系** 值得一提的是,RT-DETRv3 并未完全抛弃经典的 CNN 技术,而是将其与 Transformer 结合起来形成混合架构[^4]。例如,它采用了 YOLO 系列中的 RepNCSP 模块替代冗余的多尺度自注意力层,从而减少了不必要的计算负担。 此外,RT-DETRv3 还借鉴了 DETR 的一对一匹配策略,并在此基础上进行了优化,进一步提升了小目标检测的能力。 --- ### 总结 综上所述,RT-DETRv3 的网络结构主要包括以下几个关键组件:基于 CNN 的辅助分支、自注意力扰动学习策略、共享权重解编码器分支以及混合编码器设计。这些技术创新共同推动了实时目标检测领域的发展,使其在复杂场景下的表现更加出色。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

黑马金牌编程

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值