第14周报告1--函数的递归

本文通过递归函数解答了求解幂运算序列f(n)=1^3+2^3+…+n^3的问题,包括程序实现与运行结果展示,强调递归思维的重要性并提供上机实践指导。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

任务1:(函数的递归) 用递归函数求f(n)=13+23+…+n3,要求先将f(n)数学表达式表示成递归的形式,然后再编程序实现。

实验目的:学会使用函数的递归

实验内容:用递归函数求解表达式

/* 程序头部注释开始
* 程序的版权和版本声明部分
* Copyright (c) 2011, 烟台大学计算机学院
* All rights reserved.
* 文件名称: fun.cpp                           
* 作    者: 贺利坚                           
* 完成日期: 2011 年 11 月 29 日
* 版本号: v1.0       
* 对任务及求解方法的描述部分
* 输入描述:n的值
* 问题描述:求f(n)=1^3+2^3+…+n^3(在此^表示幂运算,1^3即1的3次方)
* 程序输出:f(n)的值
* 问题分析:首先,可以将f(n)表示为以下的递归式
     f(1)=1
     f(n)=f(n-1)+n*n*n
* 程序头部的注释结束
*/
#include <iostream> 
using namespace std;
int f(int);
int main( )
{
  int n,m;
  cout<<”请输入n的值:”;
  cin>>n;
  m=f(n);
  cout<<”f(”<<n<<”)的值为: ”<<m;
  return 0;
}
//下面是递归函数f(n)的定义
int f(int n)
{
 int fact;
 if(n==1)
  fact=1;
 else
 {
   fact=f(n-1)+n*n*n;
 }
 return  fact;
}

运行结果:下图不是我的程序的结果,是本次任务之最友好界面,作者:jk专属

总结:此题对大多数同学而言没有难度,学会使用递归,掌握了这种思维方式是一件很要紧的事。有些感觉思路差异大,甚至不喜爱递归的同学,要改变一下自己。做这题没有感觉到困难的同学还有一个特点:上机时都是有备而去的。的确,上机前设计算法,给程序打一个草稿,会给自己增加不少淡定和底气。



评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

迂者-贺利坚

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值