pytorch 多项式回归

这篇博客通过Python的PyTorch库演示了如何进行多项式回归。首先创建了一个包含20个样本的数据集,每个样本的y值由1+2x+x^2加上随机噪声生成。接着,初始化了模型参数,并设置了小的学习率防止梯度爆炸。在训练过程中,执行了前向传播、计算损失、反向传播、梯度下降和梯度清零等步骤。经过1000次迭代,最终模型能够较好地拟合数据,并绘制了样本点与预测曲线的图表,实现了数据的可视化。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

目录

1. 准备数据

2. 随机初始化参数

3. 训练数据

4. 可视化

5. code


1. 准备数据

 

首先,还是先定义我们的数据集,这里我们定义20个样本

然后真实值y近似等于 1 + 2x + x^2 ,为了不是完全符合多项式,添加了一些随机噪声

2. 随机初始化参数

因为我们打算建立一个y = a + bx + cx^2 的多项式模型去预测,所以我们需要三个参数,因为平方项乘积已经很大了,为了防止梯度爆炸,这里学习率先设置小一点 

3. 训练数据

训练的过程较为简单,还是遵循几个步骤

  1. 前向传播,网络模型的预测值
  2. 定义损失函数
  3. 反向传播
  4. 梯度下降
  5. 梯度清零
  6. 然后一直重复前面的步骤

 

4. 可视化

最后一步打印学习到的参数

然后将样本点和预测曲线绘制出来就行了

 

5. code

import torch
import matplotlib.pyplot as plt
import numpy as np


def train_data(batch_size = 20):   # 定义数据集
    x = torch.rand(batch_size) * 10
    y = x**2 + 2*x + 1 + torch.randn(batch_size) # 随机噪声
    return x,y    # y = 1 + 2x + x^2 近似

x_data, y_data = train_data()    # 取出数据
a = torch.randn(1,requires_grad=True)
b = torch.randn(1,requires_grad=True)
c = torch.randn(1,requires_grad=True)
lr = 0.0001   # 学习率

for epoch in range(1000):
    for x,y in zip(x_data,y_data):
        y_pred = a + b * x  + c * x * x   # y = a + bx + cx^2 去预测
        loss = (y-y_pred).pow(2)   # 损失函数
        loss.backward()             # 反向传播

        a.data -= a.grad.data * lr    # 更新参数
        b.data -= b.grad.data * lr
        c.data -= c.grad.data * lr

        a.grad.data.zero_()         # 梯度清零
        b.grad.data.zero_()
        c.grad.data.zero_()

    if epoch % 100 ==0:
        print(epoch, loss.item())

print(a.data, b.data, c.data)  # 打印网络学习到的参数
with torch.no_grad():    #  不需要计算梯度
    x = np.linspace(0, 11, 30)
    y = a.data + b.data * x + c.data * x * x

plt.scatter(x_data, y_data)
plt.plot(x, y)
plt.show()




样本点和我们预测的多项式曲线基本拟合

损失值

 

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

听风吹等浪起

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值