目录
1. PPA结构
以下是针对PPA (2024最新改进方法) 中多分支特征提取策略的详细介绍,结合当前研究趋势和技术实现进行系统梳理:
1. 核心思想
多分支特征提取(Multi-Branch Feature Extraction)是PPA(Pyramid Pooling Attention)2024改进的核心模块,旨在通过并行异构分支捕获输入数据在不同维度、不同尺度或不同语义层次上的特征,最终通过自适应融合提升模型表达能力。其设计灵感来源于:
-
多尺度特征融合(如FPN、UNet)
-
注意力机制的分支多样性(如Inception、Transformer多头注意力)
-
动态特征选择(如SKNet、CondConv