DenseNet (121,169,201)改进:添加Transformer层

目录

1. Transformer层

2. DenseNet 加入Transformer结构

3. 完整代码


融入模块后的网络经过测试,可以直接使用!

1. Transformer层

Transformer是2017年由Google在论文《Attention Is All You Need》中提出的一种革命性的神经网络架构,它完全基于注意力机制,摒弃了传统的循环和卷积结构,在自然语言处理等领域取得了巨大成功。

1. Transformer整体架构

Transformer由编码器(Encoder)和解码器(Decoder)两部分组成:

输入 → 编码器 → 解码器 → 输出

编码器结构

  • 由N个(原论文中N=6)相同的编码器层堆叠而成

  • 每个编码器层包含两个子层:

    1. 多头自注意力机制(Multi-Head Self-Attention)

    2. 前馈神经网络(Feed Forwa

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

听风吹等浪起

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值