目录
融入模块后的网络经过测试,可以直接使用!
1. Transformer层
Transformer是2017年由Google在论文《Attention Is All You Need》中提出的一种革命性的神经网络架构,它完全基于注意力机制,摒弃了传统的循环和卷积结构,在自然语言处理等领域取得了巨大成功。
1. Transformer整体架构
Transformer由编码器(Encoder)和解码器(Decoder)两部分组成:
输入 → 编码器 → 解码器 → 输出
编码器结构
-
由N个(原论文中N=6)相同的编码器层堆叠而成
-
每个编码器层包含两个子层:
-
多头自注意力机制(Multi-Head Self-Attention)
-
前馈神经网络(Feed Forwa
-