EfficientNet 改进:添加CAA上下文锚定注意模块(2024改进方法)

目录

1.CAA上下文锚定注意模块

1. CAA的核心思想

关键改进点

2. CAA的架构

(1) 锚点生成(Anchor Generation)

(2) 分层注意力计算

(3) 低秩近似优化(可选)

3. 2024改进方法

(1) 动态锚点选择(DAS)

(2) 跨模态锚点共享

(3) 记忆增强CAA(Memory-Augmented CAA)

4. 实验效果

5. CAA模块代码

2. EfficientNet 融合混合卷积

3.完整代码


Tips:融入模块后的网络均经过测试,可以直接使用

1.CAA上下文锚定注意模块

上下文锚定注意模块(Context Anchor Attention, CAA)是一种改进的注意力机制,旨在增强神经网络(特别是Transformer架构)捕获远程上下文信息的能力。2024年最新的改进方法进一步优化了其计算效率、长距离依赖建模能力,并增强了在低资源场景下的泛化性能。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

听风吹等浪起

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值