SwinTransformer 改进:与PSConv结合的创新设计

1.介绍

在计算机视觉领域,卷积神经网络(CNN)和Transformer架构都在不断发展。

本文将深入分析一个结合了Swin Transformer和PSConv(Partial Separable Convolution)的创新实现,展示如何通过混合架构提升模型性能。

代码概述

这段代码实现了一个改进版的Swin Transformer模型,主要创新点在于:

  1. 使用Swin Transformer作为基础架构
  2. 在patch embedding层后加入PSConv模块
  3. 自定义分类头以适应不同任务

核心组件解析

1. PSConv2d模块

PSConv2d是代码中最核心的创新组件,实现了部分可分离卷积:

class PSConv2d(nn.Module):
    def __init__(self, in_channels, out_channels, kernel_size=3, stride=1, padding=1, dilation=1, parts=4):
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

听风吹等浪起

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值