ViT模型改进:基于双路径的多尺度特征融合

本文将深入解析一个结合了Vision Transformer(ViT)ConvNeXt的双路径深度学习模型

该模型通过创新的多尺度处理和特征融合机制,在图像分类任务中展现出强大的性能。

代码介绍

模型概述

这个双路径模型(DualPathModel)巧妙地将两种当前最先进的架构——基于自注意力的ViT和基于CNN的ConvNeXt结合起来,通过多尺度特征提取和自适应特征融合,充分发挥两种架构的优势。

核心组件解析

1. MultiScaleBlock多尺度模块

class MultiScaleBlock(nn.Module):
    """多尺度模块,包含不同空洞率的卷积"""
    
    def __init__(self, in_channels):
        super().__init__()
        self.branch1 = nn.Conv2d(in_c
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

听风吹等浪起

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值