本文将深入解析一个结合了Vision Transformer(ViT)和ConvNeXt的双路径深度学习模型
该模型通过创新的多尺度处理和特征融合机制,在图像分类任务中展现出强大的性能。
代码介绍
模型概述
这个双路径模型(DualPathModel)巧妙地将两种当前最先进的架构——基于自注意力的ViT和基于CNN的ConvNeXt结合起来,通过多尺度特征提取和自适应特征融合,充分发挥两种架构的优势。
核心组件解析
1. MultiScaleBlock多尺度模块
class MultiScaleBlock(nn.Module):
"""多尺度模块,包含不同空洞率的卷积"""
def __init__(self, in_channels):
super().__init__()
self.branch1 = nn.Conv2d(in_c